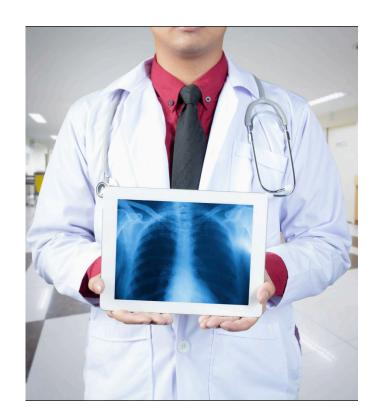


Reducing Quality Failure Rates of Portable Chest X-Ray Films Through a Multi-Step Educational Curriculum for Radiology Technologists

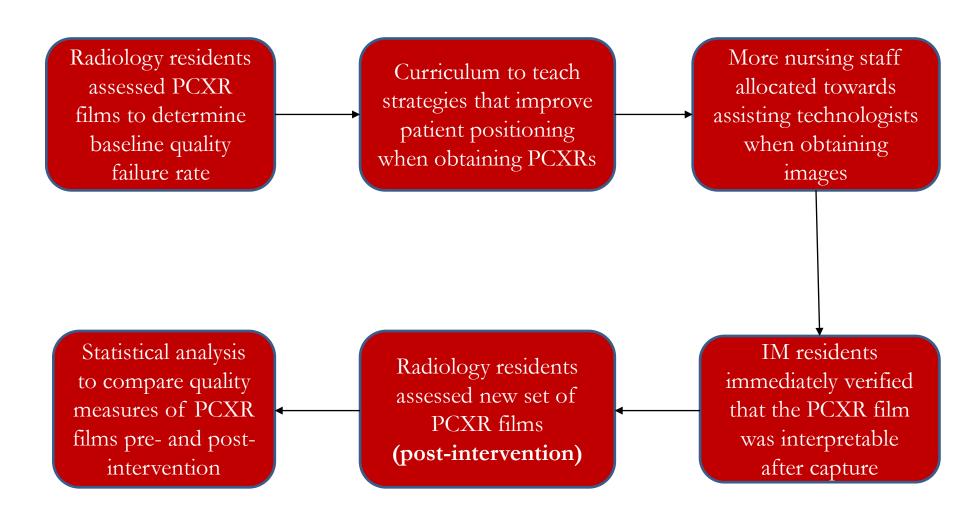

Collaborators: Michael X. Jin, MD, Kevin Gilotra, YouJin Choi BS, Jonathan Mackow BS, Katherine Chung MD, Max Hao MD, Jolanta Norelli MD/PhD, Farshid Faraji MD, James Kang MD, Kush Purohit MD, Agatha Lyczek PhD

November 30th, 2022

Background

- PCXRs used widely for patients with limited mobility and routine floor patients
- Easily detect pneumonia, pneumothorax (PTX), and acute thoracic trauma
- Poor image quality has been noted to affect radiologist's interpretation of PCXR films
- Proper patient positioning by radiology technologists of utmost importance

Rationale



- Understanding of the various **factors** associated with patient rotation, obstructed anatomy and misinterpreting pathology in PCXRs is crucial for ensuring future patients are diagnosed timely and accurately
- There is currently a gap in the literature about whether assisting radiology technologists with capturing PCXR films can lower image quality failure rates
- In general, literature surrounding efficacy and usage of PCXRs is very limited

Purpose

- 1. Identify a baseline in PCXR quality failure rates and subsequently generate interventions directed at radiology technologists.
 - 2. Determine whether interventions that target these underlying causes can lower PCXR quality failure rates.

Survey Questions for Residents

Question	Range of Responses	
Question	Range of Responses	
1.Does the anatomy of the	0: Almost none	
image suggest there is	1: Mild rotation	
patient rotation?	2: Subjective rotation	
	3: Severe rotation	
2.Does the anatomy of the	0: No	
image suggest there is	1: Yes	
vertical or up/down		
rotation?		
3 Are there any foreign or	0: No	
3. Are there any foreign or	0. 140 1: Yes	
external objects overlying	1: 1es	
the chest that either		
obscure significant		
amounts of anatomy or		
obscure critical areas?		
4.Any portion of chest	0: No	
anatomy cut-off or	1: Yes (specify:	
obscured? Please specify.	costophrenic angle, first	
ep cenj.	ribs, lateral ribs, lateral	
	lung, lung apices, lung	
	bases)	

Question	Range of Responses	
5.Does this study appear subjectively underpenetrated?	0: No 1: Yes	
6.Did the technical problem impact ability to detect finding when compared with a prior study or future study?	0: No 1: Yes	
7.During what shift was this image acquired?	1: Morning Shift (8:00 AM to 3:59 PM) 2: Evening Shift (4:00 PM to 11:59 PM) 3: Night Shift (12:00 AM to 7:59 AM)	

	Pre-Intervention	Post-Intervention
Number of total PCXRs (Number of problematic	500 (231)	287 (188)
PCXRs Assessed)		
Mean Patient Rotation Score (Range of 0 to 3)	1.3 ± 1.0	0.67 ± 0.49
No Rotation (0/3):	60 (25.9%)	100 (53.2%)
Mild Rotation (1/3):	69 (29.9%)	56 (29.8%)
Subjective Rotation (2/3):	71 (30.7%)	26 (13.8%)
Severe Rotation (3/3):	31 (13.4%)	6 (3.2%)
P-Value for Difference in Mean Patient Rotation Score	P < 0.005	
Pre and Post Intervention		
Number of PCXRs with Up/Down Rotation	100 (43.2%)	76 (40.4%)
Number of PCXRs with External or Foreign Objects	116 (50.2%)	55 (29.3%)
Obscuring Anatomy		
Number of PCXRs with Partial or Complete Anatomy	115 (49.8%)	73 (38.8%)
Absent		
Number of Studies Available for Comparison (within	168	172
one week of PCXR)		
Technical Problem Impacted Ability to Detect	73 (31.6%)	21 (12.2%)
Pathology When Compared with Previous Study		
Percentage of Problematic Films per Shift		
Morning Shift:	28%	32.6%
Evening Shift:	24%	13.6%
Night Shift:	48%	53.8%

Anticipated Results

Reduced patient rotation

- Numerous strengths and weaknesses
- Difficult to compare results due to lack of previous studies

• Night shift image capture remains a major concern

Conclusion

- Intervention successful for:
- Lowering mean patient rotation scores
- Improving ability to detect pathology
- Less films with obstructed anatomy due to foreign objects Implement measures to reduce quality failures associated with PCXRs captured during night shifts.

- Hospitals can implement various measures to benefit PCXR films from night shifts:
- Allocate more experienced workers to night shifts to assist technologists with patient positioning
- Future studies to assess the benefits of similar interventions to reduce image quality failure rates.

Works Cited

- 1. Rubinowitz AN, Siegel MD, Tocino I. Thoracic Imaging in the ICU. Critical Care Clinics 2007; 23: 539-573.
- 2. Drummond N, Laizner AM. Exploring the Necessity of Routine Daily Chest X-rays for Mechanically Ventilated Patients in the Pediatric Intensive Care Unit: An Integrative Review. *Journal of Pediatric Nursing* 2021; 61: 176–184.
- 3. Ganapathy A, Adhikari NK, Spiegelman J, et al. Routine chest x-rays in intensive care units: a systematic review and meta-analysis. Crit Care 2012; 16: R68.
- 4. Ioos V, Galbois A, Chalumeau-Lemoine L, et al. An integrated approach for prescribing fewer chest x-rays in the ICU. Ann Intensive Care 2011; 1: 4.
- 5. Bekemeyer WB, Crapo RO, Calhoon S, et al. Efficacy of Chest Radiography in a Respiratory Intensive Care Unit. Chest 1985; 88: 691-696.
- 6. Jardon ML, Pomykala KL, Desai I, et al. The Use of Mobile Chest X-Rays for Tuberculosis Telemedicine. In: Revolutionizing Tropical Medicine. Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 531–548.
- 7. Story A, Aldridge RW, Abubakar I, et al. Active case finding for pulmonary tuberculosis using mobile digital chest radiography: an observational study. 8.
- 8. Devasia J, Goswami H, Lakshminarayanan S, et al. Deep Learning Classification of Active Tuberculosis Using Chest X-Rays: Efficacy of Transfer Learning and Generalization Performance of Cross-Population Datasets. Preprint, In Review. Epub ahead of print 14 January 2022. DOI: 10.21203/rs.3.rs-1235165/v1.
- 9. Clec'h C, Simon P, Hamdi A, et al. Are daily routine chest radiographs useful in critically ill, mechanically ventilated patients? A randomized study. *Intensive Care Med* 2008; 34: 264–270.
- 10. Krivopal M, Shlobin OA, Schwartzstein RM. Utility of Daily Routine Portable Chest Radiographs in Mechanically Ventilated Patients in the Medical ICU. Chest 2003; 123: 1607–1614.
- 11. Jensen L, Meyer C. Reducing errors in portable chest radiography. 2015; 9.
- 12. Wong HYF, Lam HYS, Fong AH-T, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020; 296: E72–E78.
- 13. Jacobi A, Chung M, Bernheim A, et al. Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review. Clinical Imaging 2020; 64: 35–42.
- 14. Cohen MD, Cooper ML, Piersall K, et al. Quality assurance: using the exposure index and the deviation index to monitor radiation exposure for portable chest radiographs in neonates. *Pediatr Radiol* 2011; 41: 592–601.
- 15. Brady Z, Scoullar H, Grinsted B, et al. Technique, radiation safety and image quality for chest X-ray imaging through glass and in mobile settings during the COVID-19 pandemic. Phys Eng Sci Med 2020; 43: 765–779.
- 16. Ries AL, Clausen JL, Friedman PJ. Measurement of lung volumes from supine portable chest radiographs. Journal of Applied Physiology 1979; 47: 1332–1335.
- 17. Lefcoe MS, Fox GA, Leasa DJ, et al. Accuracy of Portable Chest Radiography in the Critical Care Setting. Chest 1994; 105: 885–887.
- 18. Turkington PM. Misinterpretation of the chest x ray as a factor in the delayed diagnosis of lung cancer. Postgraduate Medical Journal 2002; 78: 158–160.
- 19. Bruno MA, Walker EA, Abujudeh HH. Understanding and Confronting Our Mistakes: The Epidemiology of Error in Radiology and Strategies for Error Reduction. RadioGraphics 2015; 35: 1668–1676.
- 20. Beydon L, Saada M, Liu N, et al. Can Portable Chest X-ray Examination Accurately Diagnose Lung Consolidation After Major Abdominal Surgery? Chest 1992; 102: 1697–1703.