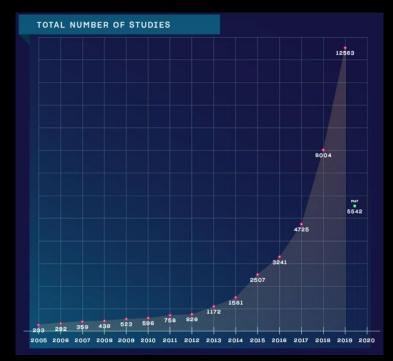
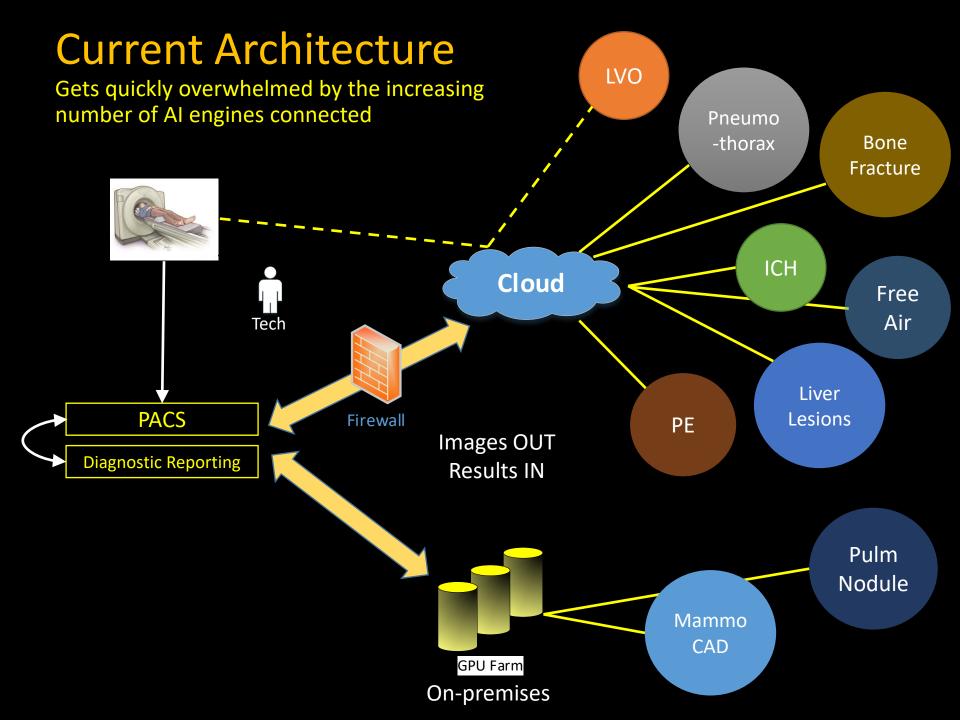
Simplifying the AI consumption process through the implementation of a standard-based AI platform

Alberto Goldszal PhD ^(1,2), Steve Higgins ⁽²⁾, TeckChuan Beh MS ⁽³⁾, Jeffrey Tumminia MS ⁽²⁾, Richard Epstein MD ⁽²⁾

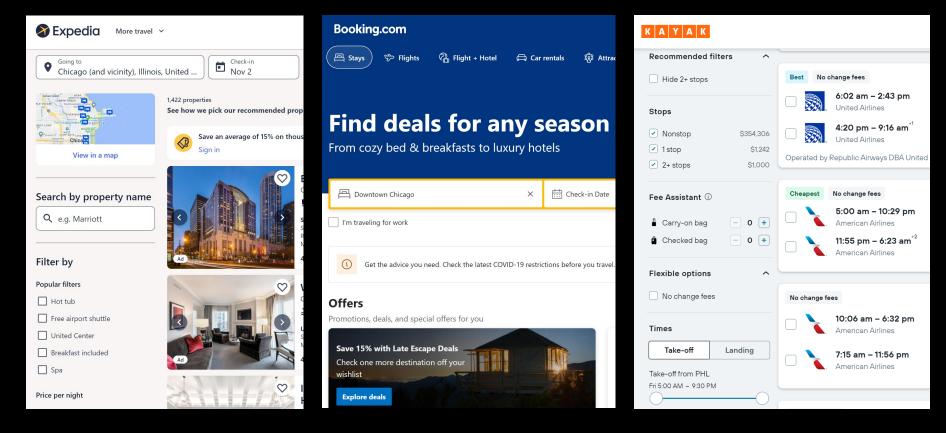

(1) RUTGERS Robert Wood Johnson Medical School, New Jersey
(2) University Radiology Group, New Jersey
(3) FUJIFILM Healthcare Americas Corporation

AI Trends


- There is an increased number of AI algorithms available to aid in the interpretation of medical images
 - As a consequence, it's important to <u>standardize</u> and <u>simplify</u> the AI consumption process

	US FDA Cleared AI Algorithms In Radiology By Year												
35	Total Algorithms Cleared As Of 2/15/2021 = 111												1
30													/
25												_/	
20													
15											1		
10													
5													
0	-		_										
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020

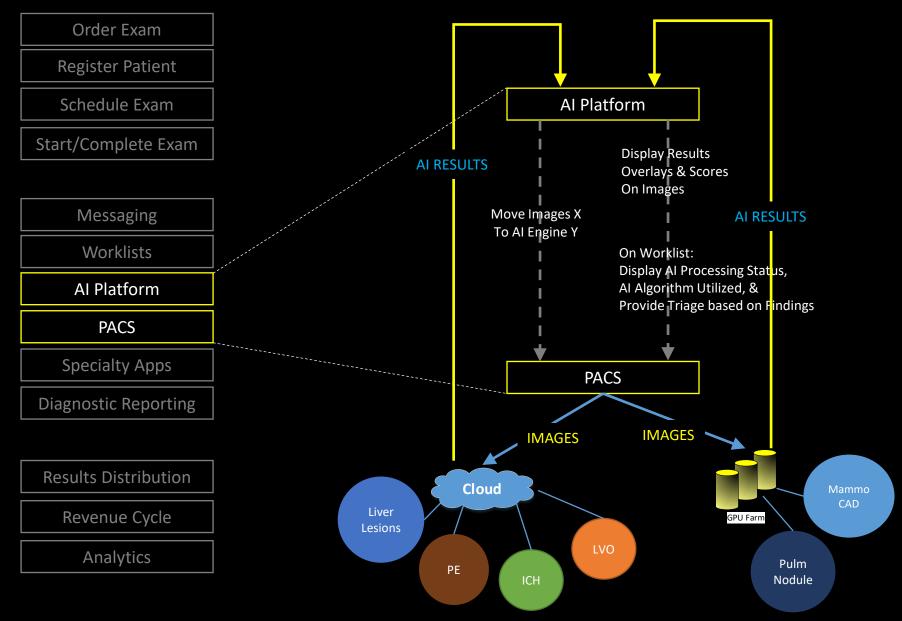
Evaluation and Real-World Performance Monitoring of Artificial Intelligence Models in Clinical Practice: Try It, Buy It, Check It. By Bibb Allen, MD, Keith Dreyer, MD, PhD, Robert Stibolt Jr., MD, et al. JACR, VOLUME 18, ISSUE 11, P1489-1496, NOVEMBER 01, 2021



Number of medical A.I. studies on PubMed.com by year from 2010 to 2020. From: A short guide for medical professionals in the era of artificial intelligence. Bertalan Meskó & Marton Görög npj Digital Medicine volume 3, Article number: 126 (2020)

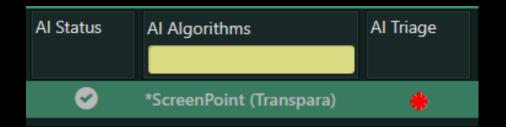
A Lesson from Consumer Platforms

They increase efficiency by aggregating distributed data into a single consumption site

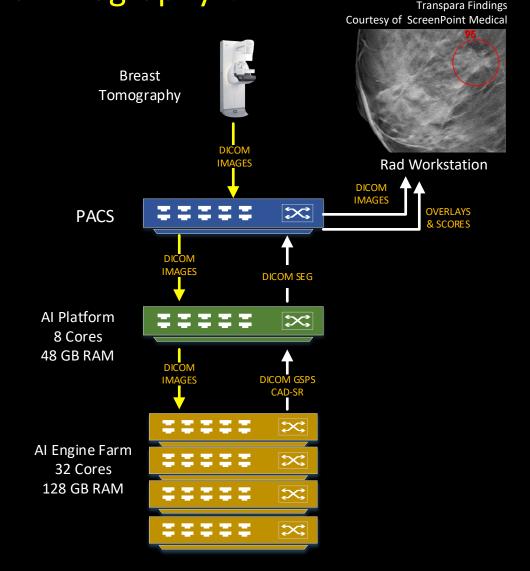

New Architecture

- A standard-based AI platform to deliver a common user experience regardless of the AI solutions adopted
 - Streamline data out of PACS & results into PACS and Reporting System
 - Minimize the impact on Technologists' workload no manual pulling & pushing of data
 - Single point of integration with on-premises & cloud-based AI engines
 - Automates the export of cases & intake of results, creates queues based on study priority and improves hardware scalability through load balancing
 - Leverages on industry-wide, vendor-agnostic standards such as DICOM & HL7
 - Greater control can be achieved through a published Open API which is publically available and shared freely

Al Platform Features & Functionality


- Automates the data flows in-and-out of PACS
 - Extraction: Easily select datasets to be routed to external engines
 - Transformation: Anonymize PHI
 - Load: Encrypt for transmission
- Orchestrates the sending of imaging data to the appropriate Al engine
 - No need for the Tech to double-pitch data
 - Provides hardware load balancing
 - Scheduling and Prioritization of cases
- Streamline the display of AI results into the Radiologist workspace, ie, PACS viewer, worklist and/or reporting system
 - Triage cases
 - View CAD results (marks, annotations, measurements, ...)

Radiology IT Technology Stack w/ AI Platform


Integration Profiles

- Integrate AI results directly into PACS viewer
 - GSPS, DICOM SC, DICOM SEG, CAD SR
 - Overlays can be toggle on/off
 - DICOM SC provides minimum level of integration
- Notifications of Results
 - Al processing status
 - AI algorithm utilized
 - Triage assignment based on AI findings

Case Study AI Platform & AI-based Mammography CAD

- For diagnostic breast exams where the interpretation occurs in near real-time, the AI TAT needs to be < 3 min (illustrated on the right)
- This is critical in order to provide the AI results prior to the radiologist's start of interpretation

AI Platform Benefits

- Orchestrates the secure exchange of imaging data and intake of AI results in a standardized and simplified manner
- Aggregates the output of multiple AI algorithms under a single platform delivering a consistent end-user experience
- Platform provides Al-vendor independence facilitating the consumption of best-of-breed Al solutions
- Platform automates the data distribution between PACS and AI engines eliminating manual workload by Technologists

Thank you Questions & Feedback: <u>AGoldszal@UniversityRadiology.com</u>

