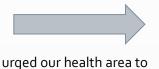
Improving efficacy and efficiency in an Emergency Unit by using the Radiology Department as the entry door of COVID-19 from the Primary Care Network

Juana M. Plasencia Martínez, <u>Marina Lozano Ros</u>, Pablo Fabuel Ortega, María C. Sánchez Ayala, Gloria Pérez Hernández, José María García Santos.

Hospital Universitario Morales Meseguer, Murcia (Spain)


INTRODUCTION

First COVID-19 wave in the Region of Murcia (Spain)

Patients with **mild respiratory symptoms** were kept **at home**

High volumen of home-confined patients Clinical needs for chest X-ray

set up a

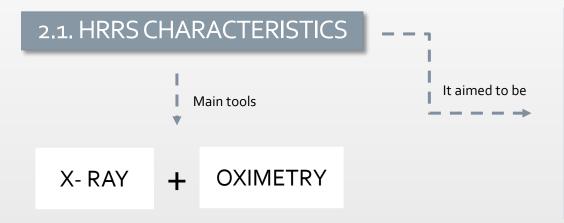
High-Resolution Radiology Supply (HRRS)

The Radiology Department (RD) was the entry-door. It aimed to:

- Provide objective respiratory clinical information
- Immediately transfer patients with pneumonia to the Emergency Department (ED)
- Avoid overwhelming arrivals of respiratory patients to the ED
- Refer back to home confinement and telephone follow-up those patients without pneumonia
- Pilot and export the idea to the other health areas

1. To analyze changes in the ED workload

OBJECTIVES

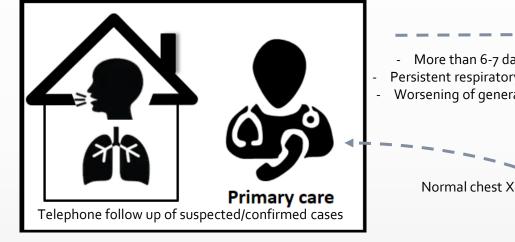

- 2. To analyze differences in waiting-times between HRRS and ED patients
 - 3. To evaluate how the HRRS discriminated the need for admission

METHODS

1. BACKGROUND

- Before the COVID-19 pandemic started, in our ED:
 - Number of patients usually treated: 1657 per week (e.g. 20-26 February).
 - Ratio of respiratory/non-respiratory patients : 1 (e.g. 206/218 20-26 March).
- Expected respiratory patients per day during the epidemic wave: 118 [(1657/2)/7]
- Through the usual ED way, the infection risk for non-respiratory patients would have presumably been increased.

2. INTERVENTION



- **1. Relevant:** conclusive X-rays
- 2. Accesible: in less than 24h and without waiting time
- 3. Swift: less than 15 min workflow
- **4. Safe:** reducing risk of patients and staff infections, and of failing communication between RD and ED.

METHODS

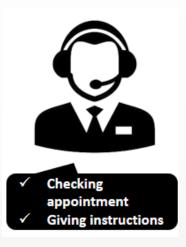
2.1. HRRS MAIN COMPONENTS

A. General Practitioners

D. Reception Provide surgical mask and explain how to reach the radiology room

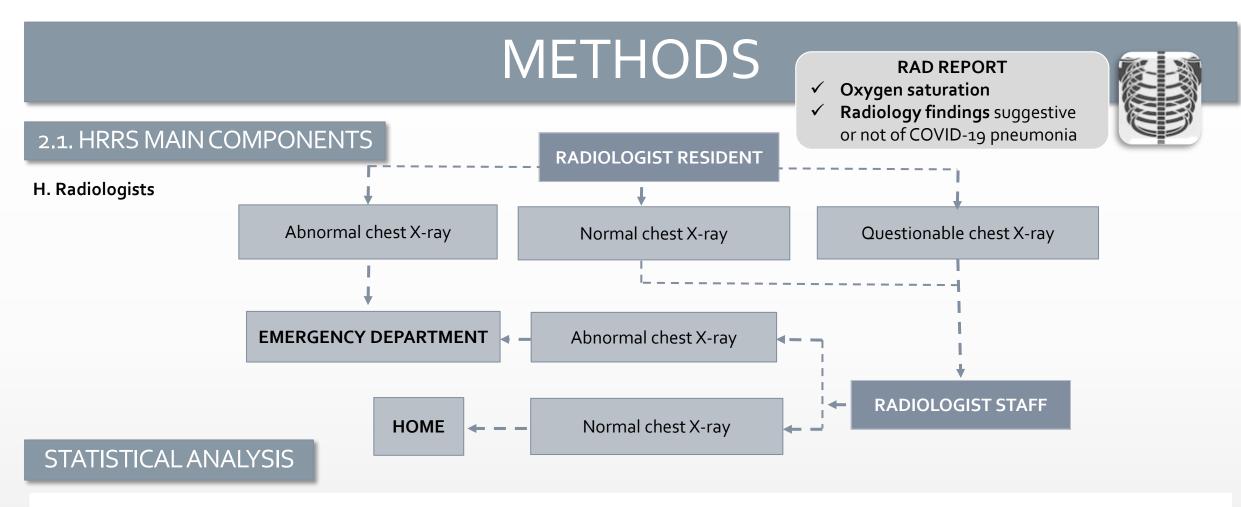
E. Radiology Department technicians and nurses

Chest X-Ray and/or chest tomosynthesis, oximetry, cleaning, informing the patient and/or accompanying to ED


G. COVID radiology room Robotized remote-control x-ray digital 3D and oximetry

H. Radiologists (next slide)

B. Specific electronic agenda


	Name	Phone number	Time	Reason	
More than 6-7 days fever rsistent respiratory symptoms			9:00	COVID-19 suspiction	
orsening of general condition			9:15	COVID-19 suspiction	
			9:30	COVID-19 suspiction	
Normal chest X-ray	C	ovid-19	appoint	ment	
95-98 Blood Ox Sat Radiology care	ad Report		Abnormal chest X-ray	Emergency care	

C. Administrative staff

I. Emergency Department Patients with radiological signs of pneumonia directly go

J. Crisis committee every day

Group 1 (G1): HRRS. Normal X-ray - Returning home. Process length: appointment time – report validation.


Group 2 (G2): HRRS. Abnormal X-ray (ground glass / consolidation / reticular patern)- ED. *Process length:* arrival time to the ED – clinical report signature. Group 3 (G3): Respiratory ED patients. *Process length:* arrival time to the ED – clinical report signature.

- Daily absolute and relative frequencies, total accumulated frequency for all groups and daily ratio of hospitalised patients por G2 and G3 were calculated.

- The analysis was performed with the IBM Statistics SPSS 20 software. The ANOVA and Bonferroni correction, Student T, Kruskal-Wallis, and Chi2 tests were applied. Statistically significant differences were assumed when P < 0.05.

RESULTS

A. WORKLOAD

The HRRS started on March 26th, with 135
confirmed and 1169 possible cases 2020, being
considered the peak of the epidemic wave.
From March 26th to April 17th 2020:
418 HRRS patients (9,89% of
active/possible home-confined cases):

- **G1**: 325 (77.75%)
- G2: 93 (22.24%). 1 patient asked for voluntary discharge.

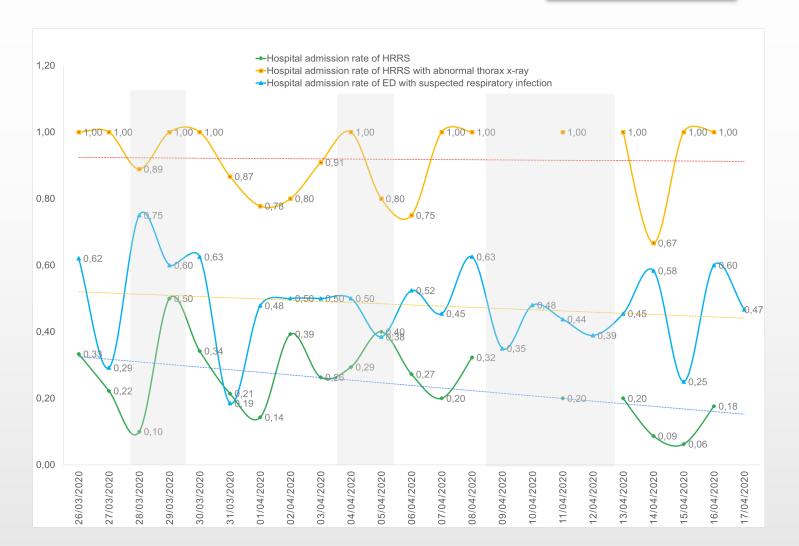
431 ED respiratory patients (G3)

- 224 (52%): home
- 203 (47.10%): admitted
- 4 (0.93%): refused admission
- 65% [(326+228)/849] of patients returned back to home confinement.
- Descent peaks of the HRRS flow- grey bands were justified by weekends or holidays, when less
 GPs were available to refer patients.

RESULTS

B. WAITING TIMES

- G1 patients (0:41 ± 1:05h) stayed in hospital significantly less time than G2 and G3 subjects


 $(5:25 \pm 3:08h \text{ and } 5:36 \pm 4:36h, \text{ respectively}; P < 0.001)$, even when G2 and G3 patients returned home $(3:36 \pm 2:58h \text{ and } 3:50 \pm 3:16h, \text{ respectively} (P < 0.001)$. - The time span in the ED did not differ between G2 and G3 when they returned home $(3:36 \pm 2:58h \text{ vs}. 3:50 \pm 3:16h; P = 0.841)$, but was shorter for G2 $(5:27 \pm 3:08h \text{ vs}. 7:42 \pm 5:02h)$ when patients were admitted (P < 0.001).

- Even considering the G2 HRRS and ED lengths together, they waited less time than G3 patients, except for the 9/93 (9.6%) G2 patients returning home (4:44 vs 3:50 h).

	GROUP 1	GROUP 2	GROUP 3
Mean	0:41	5:25	5:36
Standard Deviation	1:05	3:08	4:36
Median	0:28	4:40	4:27
Interquartile Range	0:36	2:53	4:41
Range	13:08	16:27	23:13

RESULTS

C. ADMISSION

- G2 patients were more frequently admitted (84/93, 90.3%) than in G3 (203/431, 47.1%; *P* <0.001).
- Rate per day was always higher for G2
 (mean rates: 0.92, range 0.67-1 vs. 0.48, range 0.18-0.75), regardless the epidemics time point.
- It suggests a HRRS high yield for fast admission decisions.
- All eight G₂ patients with normal chest Xrays (8/93, 8.6%) who shook ED advice were discharged by the emergency physicians.

CONCLUSIONS

- A straightforward and sustainable **outpatient HRRS could triaged and substantially decreased respiratory patients at the ED** during the COVID-19 pandemic.
- It could also reduce waiting times and hospital length, and yield fast admission decisions.
- Consequently, the RD as an entry-door for the triage of selected common pathologies might be spread to many other clinical situations.

REFERENCES

1. European Centre for Disease Prevention and Control (ECDC). Coronavirus disease 2019 (COVID-19) pandemic: increased transmission in the EU/EEA and the UK – seventh update 2020. Stockholm: ECDC; 2020. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/RRA-seventh-updateOutbreak-of-coronavirus-disease-COVID-19.pdf.

2. Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, et al. The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic: A Multinational Consensus Statement From the Fleischner Society. Chest 2020;158:106-16.

3. Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology 2020;296:172–80.

4. COVID-19 BSTI Reporting templates | The British Society of Thoracic Imaging [Internet]. [cited 2020 Jul 4]. Available from: https://www.bsti.org.uk/covid-19-resources/covid-19-bsti-reporting-templates/

5. ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection [Internet]. [cited 2020 Jun 29]. Available from: https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection 6. Ng Y, Li Z, Chua YX, Chaw WL, Zhao Z, Er B, et al. Evaluation of the Effectiveness of Surveillance and Containment Measures for the First 100 Patients with COVID-19 in Singapore - January 2-February 29, 2020. MMWR Morb Mortal Wkly Rep 2020;69:307–11.

7. Toussie D, Voutsinas N, Finkelstein M, Cedillo MA, Manna S, Maron SZ, et al. Clinical and Chest Radiography Features Determine Patient Outcomes In Young and Middle Age Adults with COVID-19. Radiology 2020 May 14;201754. Online ahead of print.

8. Shen Y, Cui Y, Li N, Tian C, Chen M, Zhang Y-W, et al. Emergency Responses to Covid-19 Outbreak: Experiences and Lessons from a General Hospital in Nanjing, China. Cardiovasc Intervent Radiol 2020;43:810–9.

9. Huang Z, Zhao S, Li Z, Chen W, Zhao L, Deng L, et al. The Battle Against Coronavirus Disease 2019 (COVID-19): Emergency Management and Infection Control in a Radiology Department. J Am Coll Radiol 2020;17:710–6.

10. Goh Y, Chua W, Lee JKT, Ang BWL, Liang CR, Tan CA, et al. Operational Strategies to Prevent Coronavirus Disease 2019 (COVID-19) Spread in Radiology: Experience From a Singapore Radiology Department After Severe Acute Respiratory Syndrome. J Am Coll Radiol 2020;17:717–23.

11. Ashari MA, Zainal IA, Zaki FM. Strategies for radiology departments in handling the COVID-19 pandemic. Diagn Interv Radiol 2020 Apr 30. Online ahead of print. 12. Zhang H-W, Yu J, Xu H-J, Lei Y, Pu Z-H, Dai W-C, et al. Corona Virus International Public Health Emergencies: Implications for Radiology Management. Acad Radiol 2020;27:463–7.

13. Stramare R, Carretta G, Capizzi A, Boemo DG, Contessa C, Motta R, et al. Radiological management of COVID-19: structure your diagnostic path to guarantee a safe path. Radiol Med 2020;125:691-4.

14. Zhao Y, Xiang C, Wang S, Peng C, Zou Q, Hu J. Radiology department strategies to protect radiologic technologists against COVID19: Experience from Wuhan. Eur J Radiol 2020;127:108996. Epub 2020 Apr 20.