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Abstract

Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging,

monitoring, treatment planning, and development of new therapies. While there is a rich history of the

development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the

validation and comparison of the computer algorithms that implement the QIB measurements. In this
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paper we provide a framework for QIB algorithm comparisons. We first review and compare various

study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-

change studies), designs with a reference standard (e.g. studies testing equivalence with a reference

standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm

precision). The statistical methods for comparing QIB algorithms are then presented for various study

types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the

performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future

directions for research.

Keywords

quantitative imaging, imaging biomarkers, image metrics, bias, precision, repeatability, reproducibility,

agreement

1 Background and problem statement

Medical imaging is an effective tool for clinical diagnosis, staging, monitoring, treatment planning,
and assessing response to therapy. In addition it is a powerful tool in the development of new
therapies. Measurements of anatomical, physiological, and biochemical characteristics of the
body through medical imaging, referred to as quantitative imaging biomarkers (QIBs), are
becoming increasingly used in clinical research for drug and medical device development and
clinical decision-making.

A biomarker is defined generically as an objectively measured indicator of a normal or
pathological process or pharmacologic response to treatment.1,2 In this paper, we focus on QIBs,
defined as imaging biomarkers which consist of a measurand only (variable of interest) or
measurand and other factors (e.g. body weight) that may be held constant and the difference
between two values of the QIB is meaningful. In many cases there is a clear definition of zero
such that the ratio of two values of the QIB is meaningful.3,4

Most QIBs requires a computation algorithm, which may be simple or highly complex. An
example of a simple computation is measurement of a nodule diameter on a 2D x-ray image.
A slightly more complex example is the estimation of the value of the voxel with the highest
standardized uptake value (SUV, a measure of relative tracer uptake) within a pre-defined region
of interest in a volumetric positron emission tomography (PET) image. Even more complex methods
exist, such as the estimation of Ktrans, the volume transfer constant between the vascular space and
the extravascular, extracellular space from a dynamic contrast-agent-enhanced magnetic resonance
imaging (MRI) sequence, where an a priori physiological model is used to fit the measured time-
dependent contrast enhancement measurements. In this paper, we consider QIBs generated from
computer algorithms, whether or not the computer algorithm requires human involvement.

While there is a rich history of the development of QIB techniques, there has been comparatively
little attention paid to the evaluation and comparison of the algorithms used to produce the QIB
results. Estimation errors in algorithm output can arise from several sources during both image
formation and the algorithmic estimation of the QIB (see Figure 1). These errors combine
(additively or non-additively) with the inherent underlying biological variation of the biomarker.
Studies are thus needed to evaluate the imaging biomarker assay with respect to bias, defined as the
expected difference between the biomarker measurement (measurand) and the true value,3 and
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precision, defined as the closeness of agreement between values of the biomarker measurement on
the same experimental unit.3

There are several challenges in the evaluation and adoption of QIB algorithms. A recurring issue
is the lack of reported estimation errors associated with the output of the QIB. One example is the
routine reporting in clinical reports of PET SUVs with no confidence intervals (CIs) to quantify
measurement uncertainty. If the measure of a patient’s disease progression versus response to
therapy is determined based on changes of SUV �30%, for example, then the need to state the
SUV measurement uncertainties for each scan becomes apparent.

Another challenge is the inappropriate choice of biomarker metrics and/or parametric statistics.
For example, tumor volume doubling time is sometimes used in studies as a QIB. However, it may
not be appropriate to use the mean as the parametric statistic for an inverted, non-normal,
measurement space. Since a zero growth rate corresponds to a doubling time of infinity, it is easy
to see that parametric statistics based on tumor volume doubling time (e.g. mean doubling time)
may be skewed and/or not properly representative of the population. See Yankelevitz5 and Lindell
et al.6 for further discussion.

CIs, or some variant thereof, are needed for a valid metrology standard. However, many studies
inappropriately use tests of significance, e.g. p values, in place of appropriate metrics. In addition,
there may be discordance between what might be a superior metric statistically and what is clinically
acceptable or considered clinically relevant. For example, a more precise measuring method will
typically better predict the medical condition, but only until the measurement precision exceeds
normal biological variation; further improvement in precision will offer no significant improvement
in efficacy. Finally, when potentially improved algorithms are developed, data from previous studies
are often not in a form that allows new algorithms to be tested against the original data. Publicly
available databases of clinical images are being developed to provide a resource of images with
appropriate documentation that may be used for computer algorithm evaluation and comparison.
Three notable examples are (1) the Lung Imaging Database Consortium (LIDC), which makes
available a database of computed tomography (CT) images of lung lesions that have been
evaluated by experienced radiologists for comparison of lesion detection and segmentation
algorithms,7 (2) the Reference Image Database for Evaluation of Response (RIDER), which
contains sets of CT, PET, and PET/CT patient images before and after therapy, as well as test/
retest, assumed zero-change, MR data sets from phantoms, human brain and breast8 (https://
wiki.nci.nih.gov/display/CIP/RIDER), and (3) the Retrospective Image Registration Evaluation
Project (www.insight-journal.org/rire/), which allows open source data retrospective comparisons
of CT-MRI and PET-MRI image registration techniques Other such databases can be found at
http://www.via.cornell.edu/databases/

Figure 1. The role of quantitative medical imaging algorithms and dependency of the estimated QIB on sources

of bias and precision.
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This paper is motivated by the activities of the Radiological Society of North America (RSNA)
Quantitative Imaging Biomarkers Alliance (QIBA).9 The mission of QIBA is to improve the value
and practicality of QIBs by reducing variability across devices, patients, and time. A cornerstone of
the QIBA methodology is to produce a description of a QIB in sufficient detail that it can be
considered a validated assay,4 which means that the measurement bias and variability are both
characterized and minimized. This is accomplished through the use of a QIBA ‘Profile’, which is
a document intended for a broad audience including scanner and third-party device manufacturers
(e.g. display stations), pharmaceutical companies, diagnostic agent manufacturers, medical imaging
sites, imaging contract research organizations, physicians, technologists, researchers, professional
organizations, and accreditation and regulatory authorities. A QIBA Profile has the following
components:

(1) A description of the intended use of, or clinical context for, the QIB.
(2) A ‘claim’ of the achievable minimum variability and/or bias.
(3) A description of the image acquisition protocol needed to meet the QIBA claim.
(4) A description of compliance items needed to meet the QIBA claim.

In a QIBA Profile, the claim is the central result, and describes the QIB as a standardized,
reproducible assay in terms of technical performance. The QIBA claim is based on peer-reviewed
results as much as possible, and also represents a consensus opinion by recognized experts in the
imaging modality. For example, the QIBA fluorodeoxyglucose (FDG)-PET/CT Profile10 was based
on nine original research studies,11–19 one meta-analysis,20 and two multi-center studies that are in
the process of being submitted for publication, as well as review by over 100 experts. During the
initial development of the profiles from the various QIBA Technical Committees, it was realized that
different metrics were being used to describe the minimum achievable variability and/or bias, and
that quantitative comparisons of the corresponding QIBs required a careful description of the goals
of the comparison, the available data, and the means of comparison. This comparison is an
important precursor to the final goal (Figure 1) of providing information as a tool for clinical
imaging or in clinical trials.

The specific goals of this paper are to provide a framework for QIB algorithm comparisons by a
review and critique of study design (Section 2), general statistical hypothesis testing and CI methods
as they commonly apply to QIBs (Section 3), followed by several sections on statistical methods for
algorithm comparison. First we address approaches to estimating and comparing algorithms’ bias
when the true value or a reference standard is present (Section 4); then we address the more difficult
task of estimating and comparing bias when there is no true value or suitable reference standard
available (Section 5). In Section 6 we review the statistical methods for assessing agreement and
reliability among QIB algorithms. We discuss methods for estimating and comparing algorithms’
precision in Section 7. Finally, we link the preceding sections to a process for establishing the
effectiveness of QIBs for implementation or marketing with defined technical performance claims
(Section 8). There is a discussion of future directions in Section 9.

2 Study design issues for QIB algorithm comparisons

There are two common types of studies for comparing QIB algorithms: (a) studies to characterize
the bias and precision in the measuring device/imaging algorithm/assay and (b) studies to determine
the clinical efficacy of the biomarker. It is the former that is the main focus of this paper. Clinical
efficacy requires a distinct set of study questions, designs, and statistical approaches to address and is
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beyond the scope of this paper. Once a QIB has been optimized to minimize measurement bias and
precision, then traditional clinical studies to evaluate clinical efficacy may be conducted. Efficacy for
clinical practice can be evaluated from clinical studies that correlate clinical outcomes to one or
more measurements for the biomarker.

There are several different QIB types (Table 1). When designing a study it is important to evaluate
and report the correct measurement type. For example, in measuring lesion size there are at least
three different measurement types: absolute size assessed from a single image, a change in size
assessed from a sequential pair of images, and growth rate assessed from two or more images
recorded at known time intervals. Each of these has a different measurand and associated
uncertainty; characterizing one type does not mean that other types are characterized. A related
issue is the suitability of a measurand for statistical analysis. For example, if in a set of change-in-
size measurements one case has a measured value of no change (i.e. zero) then the doubling time for
that case is infinity. Further estimating the mean doubling time for a set of cases that include this
case will also have a value of infinity. If the reciprocal scale of growth rate is used for a study then
these problems do not occur. The results of the study can be translated back to the doubling times
for presentation in the discussion.

There is a number of common research questions asked in QIB algorithm comparison studies.
They range from which algorithms have lower bias and more precision to more complex questions
such as which algorithms are equivalent to a reference standard. Different study designs are needed
to answer these questions. Table 2 lists several common questions addressed in QIB comparison
studies and the corresponding design requirements needed.

Studies on QIBs face two challenges that may not plague the evaluation of quantitative in vitro
biomarkers: the need for human involvement in extracting the measurement and the lack of the true
value. For many QIBs, human involvement in making the actual measurement is often permitted or
required. In some cases fully automated measurement is possible; therefore, both approaches need to
be considered in designing studies. In patient studies of QIBs, the true value of the biomarker is
often not available. Histology or pathology tests are often used as the true value, but these are more
appropriately referred to as reference standards, defined as well-accepted or commonly used
methods for measuring the biomarker but have associated bias and/or measurement error. For
example, histology and pathology are known to have sampling errors due to tissue heterogeneity
and the non-quantitative nature of histopathology tests, as well as requiring human subjective
interpretation. One situation where some data are available is the use of test–retest designs where
patients are imaged over a short period of time (often less than an hour) when no therapy is being
administered so that no appreciable biologic change can occur. We discuss both of these issues in
further detail.

Human intervention with a QIB algorithm is a major consideration for the study design. With an
automated algorithm all that is required is the true value for the desired outcome and standard
machine learning methodology may be employed. The algorithm may then be exhaustively evaluated
with very large documented data sets with many repetitions as long as a valid train/test methodology
is employed. When human intervention is part of the algorithm, then observer study methodology
must be employed. First, the image workstation must meet accepted standards for effective human
image review. Second, the users/observers must be trained and tested for the correct use of the
algorithm. Third, careful consideration must be given to the workflow and conditions under which
the human ‘‘subjects’’ perform their tasks in order to minimize the effects of human fatigue. Finally,
there is a need to characterize the between- and within-reader effects due to operator variability. The
most serious limitation of the human intervention studies is the high cost of measuring each case;
this limits the number of data examples that can be evaluated. Typically the number of cases used for
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Table 1. Types of QIB measurements with examples.

Measurement type Parameters Measurand Examples and explanations

Extent Single image V, L, A, D, I, SUV Volume (V), length (L), area (A), diameter in 2D

image (D), intensity (I) of an image or region of

interest (ROI), SUV (a measure of relative tracer

uptake).

Geometric form Single or multiple

images

VX, AX Set of locations of all the pixels or voxels that

comprise an object in an image or ROI; the

overlap of two images.

Geometric location Single or multiple

images

Distance Distance relative to the true value or reference

standard or between two measurements;

distance between two centers of mass; location

of a peak.

Proportional change Two or more repeat

images

2ðV2�V1Þ

ðV1þV2Þ
Fractional change in A or V or L or D or I measured

from ROIs of two or more images. Response-to-

therapy may be indicated by a lesion increasing in

size (progression of disease¼ PD), not changing

in size (stable disease¼ SD), or decreasing in size

(response to therapy¼RT). The magnitude of

the change may also be important (e.g. cardiac

ejection fraction).

Growth rate Two or more repeat

images and time

intervals

½ðV2=V1Þ
1=�t � 1� Proportional change per unit time in A or V or D or I

of an ROI from two or more images with respect

to an interval of time �t. Malignant lesions are

considered to have a high approximately

constant growth rate (i.e. have volumes that

increase exponentially in time). Benign nodules

are usually slow growing.

Morphological and

texture features

Single or multiple

images

CIR, IR, MS,

AF, SGLDM,

FD, FT, EM

Boundary aspects including surface curvature such

as circularity (CIR), irregularity (IR), and

boundary gradients such as margin sharpness

(MS). Texture features of an ROI: grey level

statistics, autocorrelation function (AF), Spatial

Gray Level Dependence Measures (SGLDM),

Fractal dimension measures (FD), Fourier

transform measures (FT), energy measures (EM).

Kinetic response Two or more repeat

images during the

same session

f(t), Ktrans, ROI(t) The values of pixels change due to the response to

an external stimulus, such as the uptake of an

intravenous contrast agent (e.g. yielding Ktrans) or

an uptake of a radioisotope tracer (ROI(t)). The

change in these values is related to a kinetic

model.

Multiple acquisition

protocols

Two or more repeat

images with

different protocols

during same

session

ADC, BMD, fractional

anisotropy

ADC: apparent diffusion coefficient, BMD: bone

mineral density. Unlike other QIBs considered

here, morphological and texture features may

not be evaluable with some of the statistical

methods described since they do not usually

have a well-defined objective function.

6 Statistical Methods in Medical Research 0(0)
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observer studies varies from a few 10’s to a few 100’s at most. This is an important limitation when
characterizing the performance of an algorithm with respect to an abnormal target such as a lesion.
Because disease abnormalities have no well-defined morphology and may offer a wide (maybe
infinite) spectrum of image presentations, large sample sizes are often required to fully
characterize the performance of the algorithm. In contrast, studies on automated methods are
essentially unlimited in the number of cases that could be evaluated and are currently typically
limited by the number of cases that can be made available.

Ideal data that would fully characterize bias and precision and thus validate algorithm
performance is usually not available. For example, no technique exists to validate that an in vivo
lesion size volume measurement is correct. If we were able to determine lesion size using pathological
inspection, then we still could not validate a lesion size growth rate measurement since we would
need to have a high precision volume measurement at two time points. This is in contrast to other
quantitative biomarkers such as the fever thermometer, which may easily be compared to a superior-
quality higher-precision verified reference thermometer. With no direct method for measurement
evaluation a number of indirect methods have been developed. The three main indirect approaches
are: phantoms (physical test objects) or digital (synthetic) reference images, experienced physician
markings, and zero-change data sets. Note, though, that none of these designs can achieve the full
characterization of the measurement uncertainty that is desired.

Phantoms are physical models of the target of interest and are imaged using the same machine
settings. Digital reference images are synthetic images that have been created by computer
simulations of a target in its environment; the image acquisition device (i.e. scanner) is not
involved but similar noise artifacts are added to the image. An advantage of these approaches is

Table 2. Common research questions and corresponding design requirements.

Research question: Study design requirements

1. Which algorithm(s) provides measurements such

that the mean of the measurements for an

individual subject is closest to the true value for

that subject (comparison of individual bias)?

The true value, and replicate measurements by each

algorithm for each subject

2. Which algorithm(s) provides the most precise

measurements under identical testing conditions

(comparison of repeatability)?

Replicate measurements by each algorithm for each

subject

3. Which algorithm(s) provides the most precise

measurements under testing conditions that vary

in location, operator, or measurement systema

(comparison of reproducibility)?

One or more replicate measurements for each

testing condition by each algorithm for each

subject

4. Which algorithm provides the closest

measurement to the truth (comparison of

aggregate performance)?

The true value, and one or more replicate

measurements by each algorithm for each subject

5. Which algorithm(s) are interchangeable with a

Reference Standard (assessment of individual

agreement)?

Replicate measurements by the reference standard

for each subject, and one or more replicate

measurements by each algorithm for each subject

6. Which algorithm(s) agree with each other

(assessment of agreement or reliability)?

One or more replicate measurements by each

algorithm for each subject

aMeasurement system refers to how the data were collected prior to analysis by the algorithm(s), e.g. what type of scanning

hardware was used, what settings were applied during the acquisition, what protocol was used by the operator, etc.
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that the true value is known. A disadvantage of the synthetic image approach is that currently these
methods are approximations to the real images and do not faithfully represent all the important
subtleties encountered in real images, especially the second or higher order moments of the data
(e.g. the correlation structure in the image background). Phantoms and digital reference images may
be used to establish a minimum performance requirement for QIB algorithms. That is, any
algorithm should not make ‘‘large’’ errors on such a simplified data set. However, one danger is
that an algorithm may be optimized for high performance on just the simplified phantom model
data; such an algorithm may not work at all on real data. Therefore, superior performance of an
algorithm on phantom data does not imply superior performance on real in vivo data. For example,
phantom pulmonary nodules have several properties that differ from real pulmonary nodules
including smooth surfaces, sharp margins, known geometric elemental shapes (spheroids and
conics), homogeneous density, no vascular interactions, no micro-vascular artifacts, and no
patient-motion artifacts. An algorithm that is optimized to any of these properties may appear to
have overly optimistic performance when applied to real in vivo data.

The main issue with having experienced physicians set the reference standard by, for example,
marking the boundary of a target lesion of interest in the image in order to determine the target
volume, is that studies have shown that such markings have a very large degree of inter-reader
variation.21 Therefore, it is not possible, in general, to use physicians’ marking as the true value.
Researchers are working to develop computer algorithms that have less uncertainty than even
experienced physician judgments.

Zero-change and test/retest studies take advantage of situations where two or more
measurements may be made of a target lesion when it is known or assumed that there is
insufficient time between measurements for there to be any biological change in the lesion. One
version of this is referred to as a ‘‘coffee break’’ study where the subject is scanned, then removed
from the scanner for a few minutes (‘‘coffee break’’), and then repositioned and scanned again.
Hence the true value (e.g. tumor volume) is assumed to be the same for the two measurements
although the actual true value is unknown. Frequently, such studies take advantage of opportunistic
image protocols and are limited to a single repeated measure due to possible harms to the patient
from reimaging. These studies are important when true values are not available since they provide
some information of the truth for a special case (i.e. zero-change). When viewed as measurements
from a single time point, these studies provide repeated measures to better estimate the precision of
the measurement method across a range of volumes. When considered in a scenario of two time
points (where the focus is on measuring change), the coffee break study provides an aggregate
estimate of bias and precision at the single measurement point of no change.

While test–retest studies have several advantages over phantom studies, they are often difficult to
operationalize in practice. An example of one that is relatively straightforward is CT measurements
of lung lesions where no contrast agent is used. As noted above, the patient is scanned, leaves the
scan table for a short period of time, and then is re-scanned. A more challenging example is the same
measurement, but in the liver. This is more challenging because contrast agent is often used. If the
same ‘‘coffee break’’ methodology was used, the second scan might have relatively large changes in
the phase of the contrast in the liver so differences in measurement would be convolved with the
desired ‘‘no change’’ condition. To compensate for this, one would have to perform the test–retest
study using a second injection of contrast following sufficient wash-out time of the first, and then
capture the same phase as in the first measurement. However, such a protocol is unlikely to be
acceptable to an Institutional Review Board (IRB), let alone the patients themselves.

A further limitation of the test–retest approach is that it does not address (include) several
sources of measurement error associated with time intervals relevant to clinical practice; these

8 Statistical Methods in Medical Research 0(0)
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include: variation in patient state, variation in machine calibration, and possible change in imaging
device (model or software) between images. Finally, the zero-change method includes the errors of
both the imaging system and the measurement algorithm. If the error introduced by the imaging
system is of a similar magnitude to the precision of the algorithm then care must be taken when
comparing multiple algorithms to include the image system error in the comparative analysis.22

While the above methods may not be used to fully characterize a measurement method, each may
make a contribution to a useful characterization. Phantoms and digital reference images will be
simpler to measure than real images; however, they do have the true value. Testing with phantoms
can establish a necessary minimum but cannot establish a sufficient performance level. A method
will not be expected to perform better on real images than it does on phantoms. Zero-change sets
may be able to characterize the bias and precision for the case when the change is zero. Again this
establishes a minimum performance indication; bias may be higher and precision may be lower in
the presence of a real change. Finally, it may be possible to use experienced markings in exceptional
cases where computer-assisted methods make obvious ‘‘errors’’ such as including a part of a vessel
with a lesion. These trade-offs in the various possible study designs are illustrated in Figure 2.

3 General framework for statistical comparisons

Suppose we have p QIB algorithms under investigation. We denote the scalar measurements by the
algorithms as Y1, . . . ,Yp, which may or may not include a reference standard. Our data contain
measurements Y1, . . . ,Yp from n multiple cases (e.g. patients, nodules, phantoms, etc.). Denote the
measurement of the jth algorithm for the ith case as Yij. Denote the measurement of the true value as
X; let Xi denote the value of X for the ith case. The values of the true value for each case may or may
not be ascertainable. Comparison of the performances of these imaging algorithms may involve
assessing one or more performance characteristics: bias (agreement with the true value),
repeatability (i.e. closeness of agreement between measurements when measured under the same
conditions3), or reproducibility (i.e. closeness of agreement between measurements when measured
under different conditions3); alternatively, one might assess agreement with a reference standard and
agreement among algorithms.

The classic framework for comparison studies often starts with statistical hypothesis testing. In a
typical comparison study, hypothesis testing is based on the difference between two or more groups.
For testing QIB algorithms, however, this difference is not usually of interest. Instead, improvement

Simulation
studies

Phantom
studies

Patient
studies

highestlowest

unknown (in
general)

known

highestlowest

realism

truth

cost

scarceabundant data

Figure 2. Trade-offs between different study designs which can be used for algorithm characterization and

validation.
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or equivalence or non-inferiority (NI) is often the interest when comparing QIB algorithms. For
example, in a phantom or zero-change study, one may want to test improvement or equivalence in
absolute value of bias of the new method versus old method. The former leads to a superiority test
and the latter to an equivalence test. In a clinical validity or agreement study, one may be interested
in testing whether two or more algorithms’ repeatability or reproducibility is non-inferior with a
clinically meaningful threshold. The statistical hypotheses and corresponding statistical tests are
given below for each of these situations. We also provide the analogous CI approach, which is
often preferable to statistical hypothesis testing because it provides critical information about the
magnitude of the bias and precision of QIB algorithms.

3.1 Testing superiority

A typical scenario in QIB studies is to show improvement of a new or upgraded algorithm over a
standard algorithm. The one-sided testing for superiority for a QIB algorithm is described by the
null and alternative hypotheses:

H0 : � � �o vs : HA : �5 �o ð1Þ

where � is the parameter for the difference in performance characteristics (e.g. measures of bias
or repeatability) between two algorithms and is estimated by T�S, where T is the estimated
value from the proposed algorithm (i.e. estimated from Yij’s) and S is the estimated value from a
standard/control or competing algorithm. �o is the pre-defined allowable difference (sometimes
set to zero). Typically in QIB algorithm comparison studies, smaller values of T relative to S
indicate that the investigational algorithm is preferred (i.e. less bias, or less uncertainty). For
example, T might be the estimated absolute value of the percent error of a proposed algorithm
and S is the estimated value from a standard algorithm. The test statistic is: t¼ (T�S)/SE(T�S),
where SE(T�S) is the sample standard error of T�S calculated assuming the null hypothesis,
�¼ 0, is true. We reject H0 and conclude superiority of the proposed algorithm to the standard,
if t< t�,� (a one-sided �-level test, � degrees of freedom). Note that testing is not limited to the
case of mean statistics (e.g. mean of the Yij’s) but rather can be applied for metrics of
performance such as repeatability and reproducibility. If larger values of T, e.g. reliability,
relative to S indicate the proposed algorithm is preferred, then the null and alternative
hypotheses should be reversed. When the normal assumption is invalid, two choices can be
considered: (a) transformation of a measurement based on the Box-Cox regression, (b)
nonparametric and bootstrap methods.23

In many cases a preferable approach is to use the CI approach. To declare superiority, we need to
show that the one-sided 100� (1� �)% CI, (�1, Cu) for T�S, is included in (�1, 0), or Cu< 0, as
shown in the following sketch, where Cu is the upper limit of the CI.
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3.2 Testing equivalence

In order to perform an equivalence test, appropriate lower and/or upper equivalence limits on � need
to be defined by the researcher prior to the study. The limits are sometimes based on an arbitrary
level of similarity such as allowing for a 10% difference, or based on prior knowledge of imaging
modalities and algorithms. Schuirmann24 proposed the two one-sided testing (TOST) procedure,
which has been widely used for testing bioequivalence in clinical pharmacology. The TOST
procedure consists of the null and alternative hypotheses:

H0 : � � �L or � � �U vs: HA : �L 5 �5 �U ð2Þ

�L and �U are the lower and upper equivalence limits of �. The limits of � (i.e. �) should be pre-
specified based on scientific or clinical judgment. Practically speaking, � should be a meaningful
difference to the developer of the algorithm or clinically meaningful in algorithm comparison,
beyond an arbitrary positive value. It may be sufficient to assume that data from two algorithms
are normally distributed with the same unknown variance, and the equivalence interval is
symmetrical about zero, i.e. �¼��L, �U. Thus, the critical region of TOST at the level � is

CR ¼ ðT� S
�

Þ � �g= sp 1=n1 þ 1=n2ð Þ
1=2

� �
� t1��, �

and

ðT� S
�

Þ � �g= sp 1=n1 þ 1=n2ð Þ
1=2

� �
� t�,�

where n1 and n2 are the study sample sizes of a proposed algorithm and standard, respectively, s2p is
the pooled sample variance, and t1� �,� and t�,� are the 100(1� �)% and 100�% percentiles of a t
distribution with �¼ n1þ n2� 2 degrees of freedom.25 If T and S are sample means, then the pooled
sample variance is ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn1

i¼1ðYi � TÞ2 þ
Pn2

i¼1ðXi � SÞ2

ðn1 þ n2 � 2Þ

s

In the CI approach, we need to show that 100� (1� 2�)% CI, [CL, CU], is included in [��, �], or
that ��<Cu<CL<�, where CL and CU are the lower and upper limits of the CI, respectively.

3.3 Testing NI

When a researcher wants to demonstrate that a QIB algorithm is no less biased or no less reliable or
no less reproducible than a standard method or another competing algorithm, testing for NI is
appropriate. NI does not simply mean not inferior but rather not inferior by as much as a
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predetermined margin, with respect to a particular measurement under study. This may involve an
assessment of NI and superiority in a stepwise fashion. Because there is incentive to demonstrate
superior performance beyond NI, the interest is fundamentally one-sided. The procedure consists of
the null and alternative hypotheses,

H0 : � � �1 vs: HA : �5 �1 ð3Þ

where �1 is a pre-defined NI margin for �. �� �1 represents the proposed algorithm is inferior to the
standard by �1 or more, and � <�1 represents the proposed algorithm is inferior to the standard by
less than �1. Again, typically in a QIB study, smaller values of T indicate better performance. The
test statistic is t¼ [(T�S)� �1]/SE(T�S). We reject H0 and conclude NI of the proposed algorithm
to the standard if t> t�,v (a one-sided �-level test, v degrees of freedom). Similarly, to declare NI of
the proposed algorithm to the standard using the CI approach, we need to show that the one-sided
100� (1� �)% CI, (�1, Cu) for T�S is included (�1, �1) as shown below. As the second step, if
NI is demonstrated, superiority can be assessed using a two-sided hypothesis test or CI. To preserve
the overall significance level of the study, �, we do not perform such an assessment if NI is not
demonstrated.

Examples of NI are illustrated below:

(1) Point estimate of T�S is 0; NI is demonstrated.
(2) Point estimate of T�S favors S; NI is not demonstrated.
(3) Point estimate of T�S is 0; NI is not demonstrated.
(4) Point estimate of T�S favors T; NI is demonstrated, but superiority is not demonstrated.
(5) Point estimate of T�S favors T; NI is demonstrated, and superiority is also demonstrated.
(6) Point estimate of T�S favors S; NI is demonstrated. S is statistically superior to T.
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In examples 1, 4, 5, and 6, NI is demonstrated and under the stepwise scenario superiority can be
assessed without adjusting for multiple comparisons.

The methodology for comparing the performance of QIB algorithms depends on the study
design, the research question, the availability of the true value of the measurement, and the
performance metric. Figure 3 illustrates the decision-making process for determining the
appropriate statistical methodology. Details of the methods are given in Sections 4–7.

4 Evaluating performance when the true value or reference
standard is present

The type of QIB algorithm comparison study can be classified based on whether the true value of a
measurement is available or not.26 Sometimes a reference standard can be treated as the true value if

Is it reasonable to assume a 
linear relationship between 

the true value and the 
algorithms’ measurements? 

Compare algorithms based 
on precision (Section 7)  

No Yes 

Assess agreement 
between algorithms 
(Section 6) 

Do you want to assess the  
interchangeability of algorithms? 

Yes 

No 

Compare algorithms using 
Regression without Truth 

(Section 5) 

Yes 

Are there replicate measurements 
foreach algorithm?

Yes 

No 

Yes 

Do you need to compare 
algorithms relative to truth? 

Is the true value of the 
measurement available? 

Assess bias and precision 
separately or aggregated.  
Assess individual agreement to 
a reference standard*.  
(Section 4) 

Is there a reference standard* 
available that can be treated as the 
true value or that you want to test 
individual equivalence against?  

Yes 

No 

Figure 3. Decision tree for identifying statistical methods for a QIB algorithm comparison study. *Reference

standard, defined as a well-accepted or commonly used method for measuring the biomarker but with recognized bias

and/or measurement error. Examples of reference standards are histology, expert human readers, or a state-of-the-

art QIB algorithm.
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it has negligible error, as defined by the clinical need of the QIB.4 Comparison problems in
quantitative imaging studies where the true value is present are common. Ardekani et al.27

described a study of motion detection in functional MRI (fMRI) where three motion detection
programs were compared to simulated fMRI data. Prigent et al.28 induced myocardial infarcts in
dogs and measured infarct size by two methods versus pathologic examination (reference standard
treated as the true value).

There are two general approaches to evaluate the degree of closeness between measurements by
an algorithm and the true value: disaggregated and aggregated approaches. In the disaggregated
approach, the performance of the algorithm is characterized by two components: bias and precision.
We would assert that the algorithm performs well if the algorithm has both small bias and high
precision. In the aggregated approach, the performance of the algorithm is evaluated by a type of
agreement index which aggregates information on bias and precision. With this approach we would
assert that the algorithm is performing well if there is ‘‘sufficient’’ degree of closeness judged by the
agreement index between the algorithm and the true value. If substantial disagreement is found, then
the sources of disagreement, i.e. bias or precision or both, can be investigated. It is possible that an
algorithm may be claimed to perform well in one approach, but not the other; therefore, it is
important to specify which approach is to be used a priori.

In this section we consider both disaggregate (subsection 4.1) and aggregate (subsection 4.2)
approaches to evaluating the degree to which the algorithms agree with the true value. We also
discuss methods for comparing algorithms against a reference standard to determine if the algorithm
can replace the reference standard (subsection 4.3).

4.1 Disaggregate approaches to evaluating agreement with truth

We first consider the simple situation of one algorithm compared with the true value without
replications. Consider a simple model with equal bias and precision across the n cases

Yi ¼ Xi þ "i ¼ 1, . . . , n ð4Þ

where Yi is the measurement on the ith case using an imaging algorithm, Xi is the corresponding true
value measurement, and "i is the measurement error that is assumed to be independent of Xi, with
mean d and variance �2� .

There are two types of biases: individual bias and population bias. They are equal only if the
individual bias is the same for all cases. Individual bias is defined as the expected difference between
measurements by an algorithm and the true value for a case. It describes a systemic inaccuracy in the
individual due to the characteristics of the imaging process employed in the creation, collection, and
computer algorithm implementation. An estimate of individual bias for case i is Di, which is the
measurement error of the case, Di ¼ "i ¼ Yi � Xi. The studied cases may have a tendency for the
algorithm to be greater or less than the true value. The population bias is a measure of this tendency,
which is defined as the expectation of the difference between the algorithm and the true value in the
whole population. The population bias for the simple model is d, the mean parameter for the
measurement error distribution. It can be estimated by the sample mean difference, �d, the mean
of the Di’s. A CI can be constructed for the population bias by using the standard error of the
sample mean difference.

Correspondingly, there are also two types of precision: individual precision and population
precision. They are equal only if the individual precision is the same for all cases. If the precision
under consideration is repeatability and it is expressed as variance, then the individual precision is
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defined as the variability between replications on a case; the population precision is the pooled
variability of individual precision across all cases in the population. In general, if there are
replications on each case, the individual precision for a case can be estimated by the sample
variance of the replications on this case. If there are no replications, then estimation would need
to rely on model assumptions. For example, under assumptions of the simple model in equation (4)
where there are no replications, the individual precision is ðYi � Xi � d Þ for case i, which can be
estimated by n

n�1 ðYi � Xi �
�d Þ2. The population precision is represented by �2� , the variance

parameter of the measurement error, which can be estimated as the average of the individual
precisions, 1

n�1

Pn
i¼1ðYi � Xi �

�d Þ2, which is also the sample variance of the Di’s.
If the acceptable levels of bias and precision are d0� 0 and �20 , respectively, then the algorithm

may be claimed to perform well if both jdj � d0 and �2� � �
2
0 (i.e. NI hypotheses as in equation 3).

A CI approach may be used to confirm the claims.
The population bias may not be fixed but may be proportional to the true value. This occurs

if there is a linear relationship between the QIB and the true value, i.e. linearity holds, but the
slope is not equal to one.4 Linear regression is a commonly used approach which can be applied
for detecting and quantifying not only fixed but also proportional bias between an algorithm and
the true value. One could fit a simple linear regression from the paired data Xi,Yif g, i ¼ 1, . . . , n: The
least-square technique is commonly applied to estimate the linear function E YjXð Þ ¼ �0 þ �1X.
Under the model in equation (4), the regression of the true value and the QIB algorithm
measurements should yield a straight line which is not significantly different from the equality
line. If the 95% CI for the intercept �0 does not contain 0, then one can infer that there is fixed
bias. If the 95% CI for the slope �1 does not contain 1, then one can infer that there is proportional
bias where bias is a linear function of the true value,4 i.e. E YjXð Þ � X ¼ �0 þ ð�1 � 1ÞX. Note that
this method requires several assumptions, such as homoscedasticity of error variance and normality.

For comparing algorithms, the model in equation (4) can be extended as follows. Let
j ¼ 1, 2, . . . , p index p QIB algorithms. Then

Yij ¼ Xi þ "ij ð5Þ

where Yij and "ij are the observed value and measurement error for the ith case by the jth imaging
algorithm, respectively. The error "ij is assumed to have mean dj and variance �2"j. From Section 3,
separate hypotheses may be formed for bias by using �jj0 ¼ dj � dj 0 and for precision by using
�jj0 ¼ �

2
"j=�

2
"j0 where dj and �2"j are the population bias and precision for algorithm j. Repeated

measures analysis (e.g. linear model for repeated measures with normality assumption, or
generalized estimating equations (GEEs), to account for correlations due to multiple
measurements on the same experimental unit) can be used to test for equal bias based on
outcomes of Yij � Xi or test for equal precision based on outcomes of n

n�1 ðYij � Xi �
�d Þ2. If there

are replications, Yijk, on each case, then the sample variance of the Yijk’s for case i by algorithm
j should be used in place of n

n�1 ðYij � Xi �
�d Þ2. Homogeneity of variance tests, such as the Bartlett-

Box test,29 for assessing differences in precision can also be performed. If there is a significant
algorithm effect, then one can perform pairwise comparisons using the hypotheses in equations
(1) to (3) as appropriate to rank the algorithms.

Note that these models and methods can be misleading in the case where either the bias and/or
precision vary in a systematic way over the range of measurements. For variance stabilization Bland
and Altman30 suggested the log transformation. The square root and Box-Cox transformations,
which both belong to the power transform family, are also commonly used for positive
data. However, when negative and/or zero values are observed, it is common to produce a set of
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non-negative data by adding a constant to all values and then to apply an appropriate power
transformation. If the bias is not constant over the range of the measurements, one may consider
the relative bias, i.e. the difference divided by the true value; then one needs to assume constant
relative bias over the range of the measurements. For QIB algorithms, however, these
transformations may not be sufficient. In particular, some QIB algorithms perform well in a
particular range but may be biased and/or less precise outside of this range. An example is QIB
algorithms that measure pulmonary nodule volume; these algorithms often perform best for
medium-sized lesions and may be biased and imprecise for small and large nodules.31 In these
cases, bias and precision may need to be evaluated in sub-populations, e.g. different ranges of the
measurements where the assumptions are reasonable for the selected range.

When data are continuous but not normally distributed, one may consider generalized linear
(mixed) models, or GEEs to compare algorithms’ bias. For comparing algorithms’ precision, one
may consider the analysis on the sample variance, sample standard deviation, or repeatability
coefficient (RC). Some other robust methods include nonparametric Wald-type or analysis of
variance (ANOVA)-type tests for correlated data proposed by Brunner et al.32

For visual evaluation of bias and precision, the bias profile (plot of bias of measurements within a
narrow range of true values against the true value) and precision profile (e.g. standard deviation of
measurements with the same or similar true value against the true value) can be good visual
summaries of algorithm performance separately for the bias and precision components.33

4.2 Aggregate approaches to evaluating agreement with truth

Aggregate approaches for assessing agreement can be classified as unscaled agreement indices based
on absolute differences of measurements and scaled agreement indices with values between �1 and 1.
Unscaled indices include mean squared deviation (MSD), limits of agreement (LOAs), coverage
probability (CP), and total deviation index (TDI); scaled indices include St Laurent’s correlation
measure, intraclass correlation coefficient (ICC), and the concordance correlation coefficient (CCC).
Here we will discuss some of the most popular indices. A detailed review of aggregate approaches
can be found in Barnhart et al.’s study.34

A widely accepted method for comparing a QIB algorithm relative to the true value is the 95%
LOAs proposed by Bland and Altman30 under the normality assumption on the difference Yi � Xi.
An interval that is expected to contain 95% of future differences between the QIB algorithm and the
true value, centered at the mean difference, is:

�d� 1:96�̂" 1þ 1=nð Þ

where �d is the mean of (Yi � Xi)’s, an estimate of d, and �̂" is the sample standard deviation of
ðYi � XiÞ’s, an estimate of �". A more appropriate formulation in the case of small samples is

�d� t n�1ð Þ, 0:025�̂" 1þ 1=nð Þ ð6Þ

where tðn�1Þ,�=2 is the critical value of the t distribution with degree of freedom n� 1. The LOA

contain information on both bias and precision, as it requires both low bias and high precision in

order to have small LOA. The 95% CIs for the estimated LOA are given by Bland and Altman30 and

are used for interpretation, as follows: the algorithm may be claimed to perform well if the absolute
values of the 95% CIs for LOA are less than or equal to a pre-defined acceptable difference d0. Note
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that the claim based on LOA is different from the claim based on bias even though d0 is used
for judgment. The LOA approach requires 95% of individual differences to be between �d0 and
d0 while the bias claim requires only the average of the individual differences to be between �d0 and
d0. One of the drawbacks of the LOA approach is that the LOAs are not symmetric around zero if
the mean difference is not zero. It is possible that 95% of differences are between �d0 and d0, but one
of the absolute values of LOAs exceeds d0. The concept of TDI (see below) can be used to construct
limits that are symmetric around zero with 95% probability.

Note that if we prefer not to assume that the differences are normally distributed, an alternative
to the Bland–Altman LOAs is a nonparametric 95% interval for a future difference

d 0:025 nþ1ð Þð Þ, d 0:975ð Þ nþ1ð Þð Þ

� �
where dðkÞ is the kth order statistic, k ¼ 1, 2, . . . and assuming 0:025ðnþ 1Þ and 0:975ðnþ 1Þ are
integers. When any values are tied, we take the average of their ranks.

The Bland–Altman plot provides a graphic representation of agreement in addition to the LOAs.
It illustrates the differences of two methods against their mean.35 When one of the methods
represents the true value, one may plot the differences between the algorithm and the true value
against the true value. This ‘‘modified’’ Bland–Altman plot provides a graphic approach to
investigate any possible relationship between the discrepancies and the true value.

Another simple unscaled statistic to measure the agreement is the MSD, which is the expectation
of the squared difference of measurements from a QIB algorithm with the true value,

MSD ¼ E Y� Xð Þ
2

ð7Þ

Here, we assume that the joint distribution of X and Y has finite second moments with means 	X

and 	Y, and variances �2X and �2Y, and covariance �XY. In this context, �2X denotes the variance in the
true value measurements, representing the range of the true values in our random sample of study
cases. The MSD can be expressed as

MSD ¼ 	Y � 	Xð Þ
2
þ �2Y þ �

2
X � 2�XY

which can be estimated by replacing 	X,	Y, �X, �Y, and �XY with their sample counterparts.
Inferences on the MSD can be conducted using a bootstrap method36 or the asymptotic
distribution of the logarithm of the MSD estimate.37

CP and TDI are two other unscaled measures, with equivalent concepts, to measure the
proportion of cases within a boundary for allowed differences.37,38 For CP, we need to first set
the predetermined boundary for the difference, e.g. an acceptable difference d0. The CP is defined
as the probability that the absolute difference between the algorithm and the true value is less
than d0, i.e.


 ¼ Prð Y� Xj j5 d0Þ ð8Þ

For TDI, we need to first set the predetermined boundary for the proportion, 
0, to represent the
majority of the differences, e.g. 
0 ¼ 0:95. The TDI is defined as the difference, TDI
0 satisfying the
equation 
0 ¼ Prð Y� Xj j5TDI
0 Þ. Both CP and TDI can be estimated nonparametrically by
computing the proportion of paired differences with values less than d0 for CP and using quantile
regression on the difference for TDI. If we assume that � ¼ Y� X has a normal distribution with
mean 	� ¼ 	Y � 	X and variance �2� ¼ �

2
Y þ �

2
X � 2�XY, then lnð"2Þ follows a noncentral chi-square
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distribution with 1 degree of freedom and noncentrality parameter d2=�2� . One can assess satisfactory
agreement by testing

H0 : 
 � 
0 vs: H1 : 
4
0 ð9Þ

or equivalently

H0 : TDI
0 � d0 vs: H1 : TDI
0 5 d0

for pre-specified values of 
0 and d0. Lin et al.37 estimate 
 as


̂ ¼ �ðð�0 � �d Þ=�̂"Þ ��ðð��0 � �d Þ=�̂"Þ ð10Þ

where �ð�Þ is the cumulative normal distribution, �d ¼ �Y� �X, �̂2� ¼
n

n�3 ð�̂
2
Y þ �̂

2
X � 2�̂XYÞ, and �Y, �X,

�̂2Y, �̂
2
X, and �̂XY represent the usual sample estimates. They suggest performing inference through the

asymptotic distribution of the logit transformation of 
̂. Note that the normality assumption is
required for testing the hypotheses in equation (9). If we are not willing to assume normality, a
nonparametric estimate of TDI
0 is

TD̂I
np


0
¼ dj j 
0 nþ1ð Þð Þ

assuming 
0ðnþ 1Þ is an integer. One could also simply plot and visually compare the coverage
probabilities of the QIB algorithms.

In the above discussion of unscaled agreement measures, we treated the cases as a random sample
from a population; thus, X is a random variable with no measurement error. In certain studies, one
may consider the cases in a study as a fixed sample. The expressions and their estimates of the above
agreement measures are slightly different in such a case. The specific formulas for the fixed target
values can be found in Lin et al.39

There are several aggregate scaled indices that can be considered. Correlation-type agreement
indexes with the true value are popular; however, it should be recognized that the product–moment
correlation coefficient is useless for detecting bias or measuring precision in method comparison
studies. Altman and Bland40 showed through several examples that a high value of the correlation
coefficient can coexist in the presence of gross differences. There are several agreement indices that
overcome this problem.

St Laurent41 proposed an agreement measure which can be interpreted as a population
correlation coefficient in a constrained bivariate model. We again use the model in equation (4)
where Xi is the true value measurement from the ith case randomly selected from the population.
Then with the additional assumption of d¼ 0 (no bias), the variance of Yi can be expressed as the
sum of the variance components, i.e. �2Y ¼ �

2
X þ �

2
� . St. Laurent’s reference standard correlation

measure is defined by

�g ¼
�2X

�2X þ �
2
"

ð11Þ

It is the square of the correlation between X and Y under the additive model assumption. This
correlation is the same as the ICC under the model in equation (4) without bias.
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Using �g to measure agreement means that agreement is evaluated relative to the variability in the
population of the true value measurements. The estimation of �g can be achieved by

�̂g ¼ 1= 1þ
n� 1ð Þ

Pn
i¼1ðYi � XiÞ

2

n
Pn

i¼1ðXi �
Pn

i¼1 Xi=nÞ
2

" #
ð12Þ

When comparing several algorithms against the true value, a test of superiority, equivalence, or
NI can be performed to compare the performance of the multiple algorithms using equations (1)
to (3), respectively.

Another well-known agreement index, the CCC, can be calculated under the model in equation
(4). The CCC is defined as

�c ¼ 1�
EðY� XÞ2

EðY� XÞ2 p¼0

�� ¼
2��X�Y

�2X þ �
2
Y þ ð	Y � 	XÞ

2
ð13Þ

where 	X, �X,	Y, �Y are the mean and variance of X and Y, respectively; � is the correlation
coefficient between X and Y.42 It represents the expected squared distance of X and Y from the
45	 line through the origin, scaled to lie between (�1 and 1). The estimator of �c is obtained by

replacing 	X, �X,	Y, �Y, and � with their sample counterparts, that is, �̂c ¼
2�̂�̂X�̂Y

�̂2
X
þ�̂2

Y
þ 	̂Y�	̂Xð Þ

2. It can be

calculated for each QIB algorithm against the true value to compare the performance of the QIB
algorithms. The hypotheses in Section 3 may be used to compare the CCCs between the multiple
algorithms via GEE approach.43

Lastly, receiver operating characteristic (ROC) curves and summary measures derived from them
have become the standard for evaluating the performance of diagnostic tests.44 A nonparametric
measure of performance proposed by Obuchowski45 can be used in algorithm comparison studies.
The nonparametric estimator is given by

b�0 ¼ 1

nðn� 1Þ

Xn
l¼1

Xn
i¼1

 0ðYi � Yl Þ

where i 6¼ l and

 0 ¼
1 if Xi 4Xl and Yi 4Yl, or Xl 4Xi and Yl 4Yi

0:5 if Xi ¼ Xl, or Yi ¼ Yl

0 otherwise

8<:
The index is similar to the c-index used in logistic regression. The interpretation of the index is

similar to the usual ROC area: it is the probability that a case with a higher true value measurement
has a higher algorithm measurement than a case with a lower true value. Methods for algorithm
comparison are described by Obuchowski.45

It is important to point out that measuring agreement only with this ROC-type index could be
misleading since it is, similar to correlation coefficient, only an index of the strength of a
relationship. The ROC-type index can be an informative measure of agreement to be reported
when the scale of the algorithm measurements is different from the true value measurements.

For comparison of p algorithms in terms of algorithm’s agreement with true value, the indices
mentioned in this section can be computed for each of the p algorithms. A test of superiority,
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equivalence, or NI can be performed to compare the performance of the multiple algorithms using
equations (1) to (3). We illustrate the methodology through examples in a separate paper.31

4.3 Evaluating agreement with a reference standard

In this section, we discuss methods for assessing QIB algorithms relative to a reference standard
where we do not assume that the reference standard measurements represent the true value. A simple
example is a study of several QIB algorithms to estimate the diameter of a coronary artery, where
manual measurements by an experienced radiologist is the state-of-the-art approach to measuring
the diameter. Here we ask the question: can we replace the manual measurements with the
measurements from the QIB algorithm.

Barnhart et al.46 developed an index to compare QIB algorithms against a reference standard.
The idea is to compare the disagreement in measurements between the QIB algorithm and the
reference standard with the disagreement among multiple measurements from the reference
standard. The null and alternative hypotheses are:

Ho : IER ¼
E YiT � YiRð Þ

2
�E YiR � YiR0ð Þ

2

E YiR � YiR0ð Þ
2=2

4 �I versus H1 : IER � �I ð14Þ

where IER stands for individual equivalence ratio, YiT is the measurement for the ith case for an
algorithm, YiR is the measurement for the ith case by the reference standard, and �1 is the
equivalence limit. Barnhart et al. provide estimates of IER for situations where there is one or
multiple algorithms to compare against a reference standard, and they suggest a bootstrap
algorithm to construct an upper 95% confidence bound for IER.

There are several alternative methods proposed by Choudhary and Nagaraja,47 including the
intersection–union test which compares each algorithm against the reference standard for three
aspects of technical performance: bias, within-subject standard deviation, and correlation, and an
exact test using probability criteria.48

5 Evaluating performance in the absence of the true value

Investigators typically evaluate the bias of QIB algorithms through simulated data and phantom
studies, where the true value is known and thus the techniques of Section 4 are appropriate.
However, such data fail to capture the complexities of actual clinical data, including anatomic
variety and artifacts such as breathing and motion. Thus, to obtain realistic assessments of the
performance of an algorithm, evaluation using clinical data is desirable.

Unfortunately, the true value of biomarker measurements from the vast majority of clinical data
sets is extremely difficult, if not impossible, to obtain. When a reference standard is available, it is
often imperfect, meaning that its measurements are often not exactly equal to the true value, but are
error-prone versions of it. Many other situations, meanwhile, lack a suitable reference standard
entirely.

In subsections 4.1 and 4.2 we considered situations where measurements by the reference
standard were assumed equivalent to the true value, and we proceeded with inference procedures
on algorithm performance. In subsection 4.3 we considered a special situation where we want to
assess agreement between algorithms and a particular reference standard that is used in clinical
practice, acknowledging that the reference standard may not represent the true value. We now
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consider the consequences of assuming that an imperfect reference standard’s measurements are
equivalent to the true value, and we present several alternative approaches.

Suppose we want to investigate the abilities of one or more imaging algorithms to measure tumor
volume. A common approach is to select the QIB that we believe a priori to have the best agreement
with the true value (based on results from a phantom study, for example) and treat this as a reference
standard. We again use the inference procedures from Section 4 with the reference standard
measurements in place of the true value. These approaches are adequate if the agreement between
the reference standard measurements and the actual true value is sufficiently high. However, this
agreement needs to be close to perfect in order for this approach to produce valid assessments, as
can be seen in the example below.

Consider a synthetic data set where, for each of 200 patients, we have measurements from
two new QIB algorithms, Y1 and Y2, and from our reference standard X. The agreement
between the true value and measurements from either of the QIB measurements was high, but
this agreement is notably higher for Y2 (ICC¼ 0.94, MSD¼ 1.40, TDI0.95¼ 2.32) than for Y1

(ICC¼ 0.84, MSD¼ 4.18, TDI0.95¼ 4.01). For each of the 200 patients, given a simulated true
value, we generated measurements for the reference standard and the two QIB measurements
from normal distributions with mean equal to the true value and variances dictated by the
desired agreement with the true value. We obtained maximum likelihood estimators of the
ICCs and the differences in the ICCs of the QIB algorithms first using the true value, and
then again using the reference standard X in place of the true value. We repeated this entire
procedure 1000 times. We tried these simulation studies for when X is an imperfect reference
standard (ICC of this reference standard relative to the true value is 0.8, MSD¼ 5.49,
TDI0.95¼ 4.59) and again for when X is a nearly perfect one (ICC¼ 0.999, MSD¼ 0.022,
TDI0.95¼ 0.29).

Figure 4 shows histograms of the maximum likelihood estimators of the ICCs of Y1 and Y2 and
of the difference in these ICCs using the imperfect and nearly perfect reference standards and the
true value, over 1000 simulations. The bias in the maximum likelihood estimators of the ICC of both
algorithms and of the difference in their ICC was negligible when we use the true value and nearly
perfect reference standard; coverage probabilities of 95% CIs for these quantities were 0.993, 0.992,
and 0.975, respectively, for when we used the nearly perfect reference standards and were 0.992,
0.994, and 0.97, respectively, for when we used the true values. However, the bias was substantial
when we used an imperfect reference standard, despite its relatively strong agreement with the true
value; coverage probabilities of 95% CIs for the ICC of the two algorithms and the difference in
their ICC were 0.003, 0, and 0.700, respectively.

We obtained similar results when we applied inference techniques for other metrics from
Section 4 including the MSD and TDI0.95 to these simulated data. Coverage probabilities of
95% CIs for the MSD of the two algorithms and the ratio of their MSD were 0.96, 0.941, and
0.951, respectively, when we used the nearly perfect reference standard and were 0.957, 0.948,
and 0.952, respectively, when we used the true values. Coverage probabilities of 95% CIs for
TDI0.95 of each algorithm and the ratio of their TDI0.95 were 0.96, 0.941, and 1, respectively,
when we used the nearly perfect reference standard and were 0.957, 0.948, and 1, respectively,
when we used the true values. However, when we use the imperfect reference standard in place
of the true values, the coverage probabilities for the MSDs of both algorithms and their ratio
were all zero, whereas those for TDI0.95 of each algorithm and the ratio in their TDI0.95 were 0,
0, and 0.026, respectively.

Thus, alternative approaches are needed to assess and compare the agreement of QIBs with the
true value using an imperfect reference standard or no reference standard at all. In subsection 5.1,
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we review techniques from the literature for when an imperfect reference standard is available. In
subsection 5.2, we review techniques for when no reference standard is available, and all QIB
algorithms are considered symmetric. In subsection 5.3, we review inference techniques for when
we want to relax the assumptions for the techniques in subsections 5.1 and 5.2. Finally, in subsection
5.4, we remark on the increase in sample sizes necessary to perform these techniques and suggest
alternatives for when this increase is not an option.

Figure 4. Histograms of the maximum likelihood estimators of the ICC of two QIB algorithms (left and center

columns) and of the difference in their ICC (right column), estimated using an imperfect reference standard (top row,

ICC of reference standard 0.8), a nearly perfect reference standard (center row, ICC of 0.999), and a perfect

reference standard (bottom row). The red line denotes the true value. Bias in the maximum likelihood estimators is

negligible when we use the nearly perfect reference standard or true value, but is significant when we use imperfect

reference standards.
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5.1 Error-in-variable models

First suppose that the QIB algorithms Yi1, . . . ,Yip have zero bias, so zero measurements from the
QIB algorithms mean zero value of the unobservable true value i, and that they are on the same
scale as the true value. Meanwhile, suppose that the reference standard measurements Xi are
imperfect and also have zero bias and are also on the same scale as the true value. Then the QIB
algorithm and reference standard measurements equal the value of the true value i plus noise:

Yij ¼ i þ �ij

Xi ¼ i þ �i
ð15Þ

�ij and �i are respectively noise terms associated with the QIB and the reference standard
measurements, which we assume for the time being are mutually independent and homoscedastic
across observations and have zero mean; additionally, we assume Var �ij

� 	
¼ �2j for each j,

Var �i½ � ¼ !
2, Cov½�ij, �ij0 � ¼ 0 for all i and for j 6¼ j0, and Cov �ij, �i

� 	
¼ 0 for all i and j. We also

assume the values of the true value 1, . . . , N are random variables that are independently and
identically distributed with mean � and variance �2.

For assessing the performance of a single QIB algorithm (i.e. p¼ 1) versus that of the reference
standard, Grubbs describes method of moments estimators obtained from equating sample
variances of Xi and Yij and the sample covariance to the true variances and covariance, namely

1

N� 1

XN

i¼1
Xi � �X
� �2

¼ Var Xi½ � ¼ �
2 þ !2,

1

N� 1

XN

i¼1
Yij � �Yj

� �2
¼ Var Yij

� 	
¼ �2 þ �2j and

1

N� 1

XN

i¼1
Xi � �X
� �

Yij � �Yj

� �
¼ Cov Xi,Yij

� 	
¼ �2

and solving for �2j , !
2, an �2,4 producing the Grubbs estimators. We then perform inferences on  ,

which denotes the difference between, or ratio of, the value of a selected agreement metric from
Section 4 associated with the two assays; for example, Dunn and Roberts49 suggest inferences on the
ratio of the error variances �2j =!

2, which is equivalent to the ratio of the population precisions of
the QIB algorithm and the reference standard as described in Section 4.1. We may construct CIs
for  through a bootstrap technique23; for example, we may sample vectors of data points
X1,Y11ð Þ, . . . , XN,YN1ð Þ N times with replacement to form a bootstrap data set, compute the
estimator for  using the bootstrap data, and repeat this process B times, taking the 2.5th and
97.5th percentiles of the metric estimates from the B bootstrap iterations as the lower and upper
limits of the CI.

To compare the agreement metrics of the QIB algorithm and the reference standard, we could
then test whether  ¼ 1 if  is a ratio or  ¼ 0 if  is a difference, or examine whether the CIs
contain these null values. Alternatively, we may be interested in assessing NI of the QIB algorithm
relative to the reference standard, in which case the null hypothesis becomes  4 � for some pre-
determined NI threshold �. For the specific case where  ¼ �2j =!

2, Maloney and Rastogi also
propose testing the null hypothesis that  ¼ 1 with the test statistic

T ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N� 2

1� r2

r

where r ¼ Cor Xi � Yi1,Xi þ Yi1½ �; under the null hypothesis, T has a tN�2 distribution.50
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Dunn and Roberts49 and Dunn51 also describe a similar method of moments based approach for
comparing multiple competing QIB algorithms under investigation (i.e. p � 2a) against each other
and against the reference standard. Here, assuming that all QIB algorithms have zero bias and are
on the same scale as the true value, E Xi½ � ¼ E Yij

� 	
¼ �, Var Xi½ � ¼ �

2 þ !2, Var Yij

� 	
¼ �2 þ �2j , and

Cov Xi,Yij

� 	
¼ Cov Yij,Yij0

� 	
¼ �2; we obtain estimators by replacing the expectations, variances, and

covariances in the above equations with the sample means, variances, and covariances and solving
for each of the parameters. Alternatively, we can perform maximum likelihood estimation of these
parameters as described in Kupinski et al.52 and Hoppin et al.53,54 in their regression without truth
(RWT) technique. In this context, under the common assumption that the noise terms �ij and �i are
normally distributed with mean zero and variances �2j and !2, respectively, this would entail finding
the values of 	j and �j that maximize the observed likelihood function

YN
i¼1

Z Yp
j¼1

1ffiffiffiffiffiffiffiffiffiffi
2
�2j

q exp �
Yij � i
� �2

2�2j

( )264
375 1ffiffiffiffiffiffiffiffiffiffiffi

2
!2
p exp �

Xi � ið Þ
2

2!2


 �� 
di ð16Þ

Kupinski et al. obtain these estimators numerically through a quasi-Newton optimization
approach.52 Alternatively, we can obtain these estimators through an Expectation-Maximization
(EM) Algorithm55 similar to the Simultaneous Truth and Performance Level Estimation (STAPLE)
approach described in Warfield et al. in 200456 and to the approach described in Warfield et al. in
2008.57 Although the context they consider differs from the one we consider here, the authors use an
approach based on the EM Algorithm to determine the agreement between a particular algorithm’s
or rater’s segmentation of an image and the true segmentation when the latter is not ascertainable;
their methodology is readily adaptable for maximum likelihood estimation of the parameters in this
error-in-variables model.

Bootstrap techniques similar to the ones for the single QIB algorithm case can also be used to
construct CIs for pairwise differences or ratios in agreement metrics associated with the QIB
algorithms. Similar to the p¼ 1 case above, we can assess whether the CIs of the differences
contain zero or whether those of the ratio contain one, or whether they lie below some NI threshold.

Dunn and Roberts49 and Dunn51 also propose the more flexible error-in-variable model,58 which
relaxes the assumptions of zero bias of the QIB algorithms and that the QIB algorithms are on the
same scale as the true value. Here, we assume that measurements from each QIB Yi1, . . . ,Yip are
additive combinations of noise plus a linear function of the true value i, whereas we keep the
reference standard measurements Xi as noise plus the true value:

Yij ¼ 	j þ �ji þ �ij

Xi ¼ i þ �i
ð17Þ

	j and �j are respectively intercept and slope parameters specific to each QIB and Var �ij
� 	
¼ �2j for

each j, Var �i½ � ¼ !
2, Cov �ij, �ij0

� 	
¼ 0 for all i and for j 6¼ j0,Cov �ij, �i

� 	
¼ 0 for all i and j, and the true

value values 1, . . . , N are independently and identically distributed with mean � and variance �2. In
this case, however, the number of model parameters exceeds the number of moments, specifically the
means and the variances of Xi and of Yij and the covariance of Xi and Yij. The parameters thus are
not estimable without further constraints. Dunn and Roberts49 list possible constraints based on
prior beliefs to circumvent this non-estimability, including known variance of the errors for the
reference standard !2, known ICC of the reference standard �2= �2 þ !2

� �
, or known ratio of error

variances �2j =!
2.
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Dunn and Roberts49 describe similar method of moments based techniques to find estimators of
the slope parameter �j and the QIB measurement error variance �2j in the p¼ 1 case when the ICC of
the reference standard �2= �2 þ !2

� �
or the measurement error of the reference standard !2 are

known. In both of these cases, Var Xi½ � ¼ �
2 þ !2, Var Yij

� 	
¼ �2j �

2 þ �2j , and Cov Xi,Yij

� 	
¼ �j�

2,
we can replace Var Xi½ �, Var Yij

� 	
, and Cov Xi,Yij

� 	
in these equations with their corresponding

sample variances and covariances and solve for these parameters.
Because the QIB algorithm is now not necessarily on the same scale as either the reference

standard or the true value, a more appropriate comparison of the two assays would be through
their correlation with, rather than their deviation from, the true value. Thus, we use the scaled
aggregate metrics from Section 4.2, including the ROC-type index and a modification of the ICC.
Under these conditions, the ICC of the QIB algorithm becomes

�j ¼
�2j �

2

�2j �
2 þ �2j

We can also use bootstrap techniques here to construct CIs for a difference or ratio  of the
scaled aggregate metrics associated with the QIB algorithm and the reference standard. Meanwhile,
under the assumption of known ratio of error variances �2j =!

2 and of joint normality of the true
value values i and of the measurement errors �ij and �i, Kummel59 and Linnet60 use a similar
approach to derive estimators of the intercept parameter 	j as well as of �j, �

2, and �2j for the
case of one QIB algorithm and one reference standard; this scenario is often referred to as Deming’s
regression.61

The methods Dunn and Roberts49 proposed to compare multiple competing QIB algorithms
under investigation against each other and against the reference standard are similar. Here,

E Xi½ � ¼ �, E Yij

� 	
¼ 	j þ �j�, Var Xi½ � ¼ �

2 þ !2, Var Yij

� 	
¼ �2j �

2 þ �2j , Cov Xi,Yij

� 	
¼ �j�

2, and

Cov Yij,Yij0
� 	

¼ �j�j0�
2, and again, we obtain estimators by replacing the expectations,

variances, and covariances in the above equations with the sample means, variances, and
covariances and solving for each of the parameters. They propose constructing CIs through
bootstrap techniques similar to the ones for the single QIB algorithm case; again, since the
scales of the QIB algorithms may differ, we use scaled aggregate metrics from Section 4.2 in
these inferences.

5.2 Assessing bias with no clear reference standard

We consider the case where we have no clear reference standard and all p QIB algorithms can be
considered symmetric. The model then becomes

Yij ¼ 	j þ �ji þ �ij ð18Þ

Again, the model parameters are not identifiable without further constraints. Many of the
constraints for assessing performance in the presence of an imperfect reference standard are also
applicable here, such as �j ¼ 1 and 	j ¼ 0 or constraints on the noise variances �2j . � ¼ 0 and �2 ¼ 1
also may be useful in this case.

To estimate the model parameters we may use maximum likelihood estimation as Kupinski
et al.52 and Hoppin et al.53 do in their RWT technique. In this context, under the common
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assumption that the noise terms �ij are normally distributed with mean zero and variance �2j , this
would entail finding the values of 	j and �j that maximize the observed likelihood function

YN
i¼1

Z Yp
j¼1

1ffiffiffiffiffiffiffiffiffiffi
2
�2j

q exp �
Yij � 	j � �ji
� �2

2�2j

( )264
375di ð19Þ

Similar to the case described in Section 5.1, we can compute these maximum likelihood estimators
through numerical optimization or through the EM Algorithm.55

The literature contains little on computing CIs for these parameters under this model; however,
we may be able to use similar bootstrap techniques as those for when we have an imperfect reference
standard. We sample vectors of data points Y11, . . . ,Y1p

� �
, . . . , YN1, . . . ,YNp

� �
N times with

replacement to form a bootstrap data set, compute the maximum likelihood estimators for the
model parameters and then, capitalizing on invariance of maximum likelihood estimators,
compute those for agreement metrics such as the ICC or the ROC-type index using the bootstrap
data, and repeat this process B times, taking the 2.5th and 97.5th percentiles of the agreement metric
estimates from the B bootstrap iterations as the lower and upper limits of the CI. We can also use
these techniques to construct CIs for differences or ratios between the agreement metrics of two QIB
algorithms.

5.3 Nonlinearity and heteroscedasticity

Note that the techniques in subsections 5.1 and 5.2 rely on the assumption of homoscedasticity, an
assumption that may not be realistic in practice. Indeed, for many QIB algorithms the variance of
the measurement errors often increases with the magnitude of the measurements themselves, as seen
in PET and SPECT modalities.62 Passing and Bablok describe a nonparametric technique to
estimate the intercept and slope parameters 	j and �j for a single QIB algorithm, in the presence
of an imperfect reference standard, when both the QIB algorithm measurement errors �ij and the
reference standard measurement errors �i are heteroscedastic but have variances that remain

proportional, namely Var �ij
� 	

=Var �i½ � equals a constant.63 Their estimator of �j and its CI

�̂LLj , �̂UL
j

� �
are based on order statistics of the quantity

Yij � Yi0j

Xi � Xi0

across all possible pairs of distinct observations, where again, Yij and Yi0j are the QIB algorithm

measurements for the ith and the i0ð Þth cases, respectively, and Xi and Xi0 are respectively the
reference standard measurements for the ith and the i0ð Þth cases. As an estimator of 	j, they use

the median value of Yij � �̂jXi across all cases, where �̂j is their estimator of �j; CIs for 	j simply

equal the median values of Yij � �̂
LL
j Xi and of Yij � �̂

UL
j Xi across all cases.

Note too that these approaches assume a linear relationship between the true value and the QIB
algorithm measurements and between the true value and the reference standard (see equation (15)),
an assumption that, in many QIB cases, may be adequate for a specified range of values. Passing and
Bablok also describe a nonparametric test of this linear relationship.63 The premise behind this test is
that if this linear relationship is true, then for the QIB algorithm and the reference standard
measurements Yij and Xi, Yij ¼ aþ bjXi þ eij for some coefficients a and bj and error terms eij,
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and if this linearity between Yij and Xi holds, then we should expect Yij 5 âþ b̂jXi for approximately
half of the cases, where â and b̂j are estimators of a and bj, respectively. Unfortunately, methods to
assess the performance of QIB algorithms when their relationships with the true value are
nonlinear and when the reference standard is imperfect have received very little attention in the
literature thus far.

5.4 Further remarks

Preliminary simulation studies indicate that RWT and the techniques described in Dunn and
Roberts49 and Dunn51 alleviate the problems in assessing the performance of QIB algorithms that
we encountered when we simply used the reference standard in place of the true value. When we
applied these techniques to the data used to simulate the histograms in Figure 3, the coverage
probabilities of the 95% bootstrap CIs for both the ICC values themselves and differences in
reliability ratios exceeded 0.95.

However, the unobservable true value results in a reduction in information relative to the known
true value case,64,65 which means we will need larger sample sizes to obtain acceptably narrow CIs
with these techniques. Application of these techniques to this same simulated data also indicate this;
the CIs these techniques produce are substantially wider than those we would have obtained using
the techniques in Section 4 had the true value been known. The 95% bootstrap CIs for the ICCs
themselves associated with RWT were over 1.2 times as wide whereas those associated with the
Grubbs estimators were over twice as wide. The 95% bootstrap CIs for the differences in ICCs
associated with RWT were over 1.5 times as wide and those associated with the Grubbs estimators
were over twice as wide. Thus, the increase in sample size needed for these techniques may be
substantial.

When such an increase in sample size is not an option, a more feasible approach may be to assess
the agreement between the QIB algorithm and the reference standard as described in Section 4.3
above. Although good agreement between the two algorithms may not necessarily mean good
performance, poor agreement may indicate problems with the QIB algorithm. Poor agreement
between a QIB algorithm and a reference standard can be a warning about the performance of
the former.

6 Assessing the agreement among algorithms

In many cases it is of interest to know if the measurements from QIB algorithms are sufficiently
close, i.e. agree, such that the management of a case on their bases would be the same. In other
words, we want to know whether the algorithms can be used interchangeably. Here we assume that
no reference standard is available. The statistical methodology for agreement studies has received
considerable attention;30,59,38 however, there is little consensus about what statistical methods are
best. Unfortunately, it seems that much of the confusion lies around conceptual ambiguities with the
terms ‘‘reliability’’ and ‘‘agreement’’. There are important differences between these concepts.
We use the following definitions for our discussion.3

Agreement is defined as the degree of closeness between measurements made on the same
experimental unit. Agreement is not used literally as a binary concept (i.e. perfect agreement or
not); rather, it is used to describe the degree of closeness between measurements. Precision of an
algorithm is one kind of agreement measure because it evaluates the degree of closeness between
those measurements made by the same algorithm on the same experimental unit. To determine if
algorithms can be used interchangeably, the measurements by different algorithms should be
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sufficiently close. Some indices for assessing agreement, e.g. LOA, have unique common sense values
and are easy to explain to non-statisticians because the indices can be interpreted in terms of the unit
of the measurement. Other agreement indices, e.g. ICC, are dimensionless and often depend on
population characteristics; they do not have direct interpretation in terms of the unit of
measurement. Agreement indices can be used in situations with a reference standard (see Section
4) or without a reference standard. In this section we consider agreement indices for the situation
without a reference standard. A special type of agreement measure is reliability.

Reliability is defined as the ratio of between-subject variance to total variance based on the
observed measurement. Because reliability is scaled relative to between-subject variability, it is
sometimes interpreted as the ability to differentiate experimental units. Intuitively, this is because
the larger the between-subject variability, the larger the reliability when the difference between
measurements by algorithms remains the same. The most commonly used measure of reliability is
the original ICC, defined as the ratio of inherent variability in the error-free (true) levels of the
measurand to the total variability of all measurements in the sample. There are several versions of
ICCs based on different ANOVA models.66,67 In general, reliability is a dimensionless quantity,
which explicitly depends on the heterogeneity of the population in which the measurements are
made. Deciding what value constitutes sufficiently high reliability is always somewhat subjective and
population specific.

6.1 Unscaled measures of agreement

The quantification of agreement or reliability involves a model of how measurement uncertainties
influence the agreement/reliability. The model can be explicit as ANOVA where each source of
uncertainty is a separate term (e.g. case-specific, algorithm-specific, case-by-algorithm interaction)
or implicit where the observation is a sum of two independent terms: true value and a measurement
error (i.e. as in the model in equation (4)).

Consider a simple general model:

Yijk ¼ 	ij þ "ijk ð20Þ

where Yijk and "ijk are the observed value and measurement error for the ith case by the jth imaging
algorithm at the kth replication. 	ij is conditional on the mean of infinite replications made on case i
by algorithm j; it is a random variable with mean 	j. For many applications, there is only one
observation per algorithm per case; thus, we assume here that k¼ 1. Let �2"j be the variance of the
measurement error for the jth algorithm.

We first consider measures of agreement that have an intuitive interpretation in terms of the unit
of measurement. The MSD in equation (7) can be used as a measure of agreement, where instead of
comparing an algorithm against the true value, one can compare two algorithms with each other.

An alternative approach is the LOA by Bland and Altman,35 which provides a range within which
we expect 95% of the differences in measurements between two algorithms to lie. Similar to equation
(6), the LOA are calculated as

ð �Yi1 � �Yi2Þ � t n�1ð Þ;a=2sd Yi1 � Yi2ð Þ 1þ 1=nð Þ ð21Þ

where sd Yil � Yi2ð Þ is the sample standard deviation of the differences in measurements between two
QIB algorithms and t n�1ð Þ;a=2 is the critical value of the t distribution with degree of freedom n� 1.
If the 95% limits of the agreement interval are included in �do, þ do½ �, we conclude that two
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algorithms agree. Bland and Altman30 also provide estimates when replicates are available for each
algorithm (k> 1).

Other agreement measures include the TDI, TDI
o, with interval �do, þ do½ � having 95%
probability content,38 and the CP, 
, defined as the probability that the absolute difference
between two algorithms is less than the acceptable difference 
o (see subsection 4.1). These
agreement indices all have intuitive interpretation on the unit of the measurement, but the claim
of agreement depends on the choice of the acceptable difference.

6.2 Scaled measures of agreement

There are several dimensionless agreement indices based on various sampling designs. When there is
only a single measurement per case per algorithm, the commonly used explicit model is the one-way
ANOVA

Yijk ¼ 	þ �i þ "ijk ð22Þ

where 	 is the population mean and the �i’s are case-specific random effects, with expected mean
zero and variance �2�. "ijk’s are random measurement errors with mean zeros and variance �2" . The
model assumes that there is no systematic offset in measurements between algorithms within a case,
i.e. [E(Yi1�Yi2)¼ 0] and that the within-case variances, var(Yij), are equal for all algorithms.

The original version of ICC is defined as the ratio of the variance between cases to the
total variance among the QIB algorithms. The variances are derived from the ANOVA model
in equation (22):

ICC ¼
�2�

�2� þ �
2
"

ð23Þ

Other versions of ICC exist with fewer assumptions than the model in equation (22) and for
situations with replicated measurements.30,66,67 The CCC (equation (13)) can also be used to assess
agreement, where instead of comparing an algorithm to a reference standard as in Section 4, one
compares two QIB algorithms. Comparisons of ICC and CCC68 show that CCC is the same as the
ICC if the data are normally distributed. Without the normality assumption, the value of CCC is
generally smaller than the value of ICC.

We caution that if agreement is measured on different populations for different algorithms, then
agreement indices such as the ICC or CCC should not be used. This situation commonly occurs
when a new algorithm is compared to an established algorithm where the new algorithm is tested on
a different population than the established algorithm. The problem is that these indices depend on
population characteristics, thus comparisons of ICC or CCC based on different populations are not
valid. Also note that conclusions about agreement reached with a scaled measure may not concur
with the results with an unscaled measure. For example, a high ICC does not guarantee that the
LOAs are contained in the interval ½�do, þ do�.

7 Evaluating algorithm precision

If the goal of a study is to select one or a few QIB algorithms among several for further development,
comparisons based on the precision of the algorithms can be pivotal when a reference standard is not
present and we are not willing to make the assumptions in Section 5. Specifically, the algorithms
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with high precision are preferred for further development. If replications by algorithms are available
(i.e. measurements taken under the same condition on the same experimental unit by each
algorithm), precision can be assessed as repeatability (see subsection 7.1). If multiple
measurements are available under different experimental conditions, for example by several
observers using the same algorithm, precision can be assessed as reproducibility under the
reproducibility condition (subsection 7.2). Both types of precision estimates are ultimately
important in characterizing QIB algorithm performance.

7.1 Comparing the repeatability of QIB algorithms

The RC or repeatability limit is a commonly used measure of repeatability,30 which is defined here as
the least significant difference between two repeated measurements on a case taken under the same
conditions:3

RC ¼ 1:96
ffiffiffiffiffiffiffiffi
2�2"

q
¼ 2:77�" ð24Þ

The interpretation of RC is that the difference between any two normally-distributed
measurements on the case is expected to fall between �RC and RC for 95% of replicated
measurements.51 The RC in equation (24) can be estimated through one-way ANOVA by pooling
RCs across the cases where RC is assumed to be the same across the cases. An estimate of �2" is

�̂2" ¼
Xn
i¼1

Xk
k¼1

Yik � �Yi

� �2
=nðK� 1Þ ð25Þ

where

�Yi ¼
XK
k¼1

Yik=K

is the average over K replications for case i (i¼ 1, 2,. . . n). The 95% tolerance interval for 95% of
differences between replicated measurements is

dRCL, dRCU

� �
¼ 2:77�̂L, 2:77�̂Uð Þ

where

�̂L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n K� 1ð Þ�̂2� =�

2
nðK�1Þð0:975Þ

q
,

�̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n K� 1ð Þ�̂2� =�

2
n K�1ð Þð0:025Þ

q
and �2n K�1ð Þð�Þ is the 100�th percentile of the �2distribution with nðK� 1Þ degrees of freedom.

Another measure of repeatability is the within-case coefficient of variance (wCV). It is a relative
measure of repeatability, sometimes called error rate, which is defined as

!CV ¼ �"=	x

The estimate of wCV can be obtained by substituting �" and 	x with their moment estimates:

	̂x ¼ nKð Þ�1
Xn
i¼1

XK
k�1

Yik
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and �̂" from equation (25). Alternatively, wCV can be estimated through maximum likelihood
estimation for the normal or log-normal distributions.69

Hypothesis tests in Section 3 can be formed to compare the repeatability among the algorithms.
For example, when comparing the repeatability of multiple QIB algorithms, we can use the general
model in equation (20). To determine whether the repeatability in terms of RC of one algorithm is
different from others, we test the null hypothesis that measurement error (repeatability) variances
are homogeneous (�2"1 ¼ � � � ¼ �

2
"p) versus the alternative hypothesis that the repeatability differs

across the algorithms. If this overall hypothesis is rejected, then pairwise comparisons between
algorithms can be performed. If the algorithms were applied to different sets of cases (randomly
distributed to the algorithms to avoid bias), then the Levene test for homogeneity of variance on the
differences Yijk � �Yij

� �
’s can be used,70 where �Yij is the sample mean for the ith case and jth

algorithm over the replications. If the algorithms were used to take measurements on the same
set of experimental units, then approaches such as GEE or bootstrap methods would need to be
employed to account for correlations of the estimated variances of the algorithms.

7.2 Comparing the reproducibility of QIB algorithms

Similar to RC, the reproducibility coefficient (RDC) may be defined as the least significant difference
between two repeated measurements taken under different conditions. For example, the repeated
measurements could be taken with different instruments, on different days, and by different readers
(if the measurements are subject to reader variability). Notice that the definition of RDC depends on
the conditions being varied in any given study of measurement reproducibility.3

Consider a simple reproducibility study in which for n cases, K� 2 repeated measurements are
taken per day for D� 2 days. In this study design, the condition being varied is day, and days are
crossed with cases. For kth repeated measurement Yidk on day d for case i, i¼ 1,2,. . .n, d¼ 1,2,. . .D,
and k¼ 1,2,. . .K, consider the model

Yidk ¼ 	þ �i þ �d þ ð��Þid þ "idk ð26Þ

with random effects �i 
 Nð0, �2�Þ for cases, �d 
 Nð0, �2� Þ for days, ð��Þid 
 Nð0, �2��Þ for case by day
interactions, and "idk 
 Nð0, �2" Þ for replicates within day and case.

For this study, RDC is defined as the 1.96 times the standard deviation (SD) of a difference
between two measurements Yidk and Yid0k0 taken on the same case i but on different days d and d’.
The interpretation of this RDC is that the difference between any two normally-distributed
measurements taken on a case on different days is expected to fall between �RDC and RDC for
95% of repeated measurements.

Upon inspection of equation (26), this SD is equal to square root of two times the sum of all the
variance components except for �2� , the random case effects variance. Thus,

RDC ¼ 2:77
ffiffiffiffi
V
p

, V ¼ �2� þ �
2
�� þ �

2
"

For example, an approximate 95% CI on RDC may be obtained by the method by Graybill
and Wang.71

In the reproducibility study described above the levels of only one condition (day) are being
varied. More complex reproducibility studies can be considered, in which variation in the levels of
multiple conditions are studied simultaneously, with the conditions either nested or crossed with
each other. RDC would then be defined as the 1.96 times the SD of the difference between two
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measurements taken under different levels for all of the conditions under study. Defined this way,
RDC then represents the largest variation expected in the two measurements for the conditions
being considered. More precisely, the interpretation of this RDC is that the difference between any
two normally-distributed measurements on a case taken under different levels of all conditions is
expected to fall between �RDC and RDC for 95% of repeated measurements.

It is important that the statistical analysis of RDC respects the study design. Specifically,
estimation of the variance components depends on whether conditions are nested or crossed with
each other.72

The statistical model (equation (26)) assumes days have random effects on the measurement. That
is, days are assumed to be a random sample from the ‘‘population’’ of days. Consecutive days may
not constitute a random sample. Non-consecutive days may be preferred to allow for more variation
to be introduced into the testing environment. Likewise, for other conditions (e.g. instrument,
reader), the levels under study for a condition should be representative of the population of levels
that could have been studied to the extent possible.

A reproducibility study could be designed to compare the RDCs of two or more algorithms. For
the same design as described above but with repeated measurements on each of j¼ 1, 2,. . . p
algorithms instead of just one, the model in equation (26) would be modified to include fixed
effects for the algorithms, and random effects that depend on j for case, day, and day by case. In
this mixed effects model, the RDCs for the algorithms could be estimated by extending the method
of moments described. However, for a 95% CI on the difference in RDC between algorithms, the
Graybill and Wang method71 would not apply because the coefficients for some of the mean squares
will be negative. Another method would have to be used, such as restricted maximum likelihood.

8 Process for establishing the performance of QIB algorithms

A precondition for the adoption of a QIB algorithm for clinical and or research use should be the
demonstration of its consistent performance across imaging devices and clinical centers and the
assessment of the biomarker’s safety and efficacy. In other words, a QIB needs proof that it
actually works for its intended use in clinical practice or in clinical trials. In the context of
Figure 1, this is the last step of ‘‘decision or further action’’. In the case of algorithms that are
going to be commercialized, there is no formal guidance from the Food and Drug Administration
(FDA) for this process.

In this section, we suggest a process for establishing the technical performance of a QIB algorithm
for the purpose of clinical acceptance and/or regulatory approval of the algorithm with a defined
performance claim. ‘‘Performance’’ in this context refers to unbiased, repeatable, and reproducible
measurements produced by an algorithm in its role (i.e. use) in medical practice. A suggested process
for establishing the performance of a QIB algorithm is summarized as seven steps in Table 3, which
are described in more detail below. Note that the process outlined here is intended for ‘‘mature’’
algorithms that have been evaluated in multiple studies such that their performance, sources of
variability, and limitations are well known. QIBA Profiles, described in Section 1, typically cover
steps 1–5 in Table 3 (sometimes referred to as ‘‘technical performance’’), while steps 6 and 7 relate to
the evaluation of the QIB as a useful tool for clinical practice and/or clinical trials (sometimes
referred to as ‘‘clinical performance’’).

Step 1: The QIB algorithm and its measurand must first be defined precisely. The data acquisition
process including data review needs to be clearly specified. Many medical imaging devices
are designed for a wide range of different imaging tasks and are provided with a large number
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of user-specified settings. It is important that the necessary device setting and image review
process be completely specified and observed. The description of intended role of the assay
should include the specific target patient population and the clinical setting in which the
algorithm would be used. Assumptions about the acquisition and presentation of input data
should be stated using standard terminology,3 as well as an outline of the image processing
incorporated into the algorithm itself.

Step 2: Knowledge of the details of the algorithm and early studies of the algorithm typically reveals
sources of variability and their relative magnitudes. Depending on the source and magnitude of
the variability, these may need to be included as part of the assessment of the algorithm’s
performance. Examples of sources of variability include acquisition settings on input data,
scope and nature of reader interaction, and particular lesion characteristic.73

Step 3: Depending on the specific role of the biomarker in clinical practice, the performance metrics
critical to the role of the biomarker must be identified, the sub-populations for which the metrics
will be estimated must be defined, and the methods for estimating the metrics must be fully
described. If commercialization is planned, the agency granting approval should first agree to
the metrics and the method for their estimation prior to conducting the study.

Step 4: The algorithm’s performance should be compared with other similar algorithms’
performance and/or against the performance of humans. This step can help identify
weaknesses of the algorithm and areas needing improvement before continuing with the process.

Step 5: Test sets should represent the target patient population in the target setting and should
include cases that span the range of known sources of variability. The target patient population
should include patients representing a range of common co-morbidities, disease characteristics,

Table 3. Steps in process for establishing performance of a QIB algorithm.

Steps Examples

1. Define the QIB, specifying the measurand, the

protocol for implementing the QIB and algorithm

in clinical practice, and the clinical context for use

Tumor volume as a measure of tumor burden after 2

weeks of thoracic radiation therapy (TRT) to

determine if TRT should be continued for non-

small cell lung carcinoma (NSCLC)

2. Identify known sources of variability in the

algorithm’s measurements

Lesion characteristics (e.g. location); patient

condition (e.g. dehydrated); scanner manufacturer.

3. Determine the performance metrics critical to the

biomarker’s specific clinical role within an

explicitly identified sub-population

Sensitivity: ability to detect change in tumor volume

since prior measurement;

Specificity: ability to detect absence of change

4. Compare algorithm’s performance to other

algorithms’ performances

Methods described in subsections 4.3 and 6 to assess

level of agreement with available reference

standards/algorithms

5. Identify one or more reference data sets for

evaluation

Physical phantoms; digital reference objects (DROs)

using synthetic data; test–retest clinical data sets

6. Define the minimum acceptable criteria for the

metrics identified in step 3

Derived based on effect size requirements of

randomized clinical trials (RCTs) where

biomarker is used in drug development, or

acceptable error rate on individual basis for

patient care

7. Test the algorithm’s performance using the criteria

in step 6

Statistical tests of superiority or non-inferiority
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imaging settings (e.g. sedated vs. non-sedated patients). If human readers are involved in the
performance of the algorithm, then readers become a second study population. Different test sets
will likely be needed to evaluate performance including synthesized and clinical data sets.
Sequestered data sets and a neutral third party to run, record, and analyze the algorithm’s
performance offer an additional level of confidence in the testing process.

Step 6: In some scenarios, the performance of the QIB algorithm will be compared against the
conventional clinical method to determine if the QIB algorithm’s performance is non-inferior
to the existing standard method. In other scenarios, there may be no standard of care
against which to compare the biomarker. In the latter scenarios, defining minimum acceptable
criteria for the metrics based on the intended clinical use is probably the most difficult step in the
process.

Step 7: Once minimum acceptable criteria are decided on, formal statistical tests should be
carried out. If the goal is to show that the QIB algorithm is superior to a state-of-the-art
method, then statistical hypotheses for testing superiority are applicable (see equation (1)). In
other scenarios, the goal might be to show that the imaging biomarker’s reproducibility is
within a minimum acceptable range. Here, we might use the hypotheses stated in equation (3)
for testing NI.

It should be noted that these steps, particularly the technical performance steps, generally need to
be followed for any distinct algorithm which produces a QIB measurement, whether a variant of an
established algorithm or new algorithm by different suppliers. Specifically, the steps must be
repeated and/or equivalence testing to an established algorithm must occur (step 4).

9 Discussion and recommendations

QIBs offer tremendous promise for improving disease diagnosis, staging, and treatment, and for
expediting the regulatory approval of new therapies. However, due to the complexity of the QIB
measurement process and the lack of true values for calibration, QIBs face additional hurdles not
faced by other, e.g. specimen, biomarkers before clinical uses for the quantified measurements can be
validated. While much progress has been made in the development of QIB algorithms, few have been
rigorously evaluated in terms of technical and clinical performance. This paper summarizes the state
of this science for the statistical evaluation and comparison of computer algorithm technical
performance. In this section we summarize our findings and recommendations.

In the evaluation of QIB algorithms, an appropriate figure of merit or metric must be selected for
the statistical testing and comparison. We have focused on metrics that summarize the bias and
precision of a QIB algorithm and its agreement with current measurements or clinical tests, because
comparisons of alternative or competing QIBs are often the questions of interest.

We have noted that automated algorithm methods, as opposed to methods that involve human
intervention, require different study designs and analyses. In general, study designs for automated
methods are simpler and more robust than those for tests where algorithms involve human
intervention.

Especially valuable in the preclinical stage of QIB evaluations are various indirect methods for
assessing performance, such as employing data sets of phantoms or digital reference images, or zero-
change clinical data sets. Furthermore, they offer an opportunity to assess test performance with
known truth, and in some cases the methods may be the only avenue to a testing paradigm with the
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true value. More work is needed in relating such indirect evaluation methods of QIB performance to
expected test performance in the actual target clinical population. Shared data sets, improved
realism of phantoms, and hybrid approaches (for example, simulations of realistic pathologies in
normal images) are all areas worthy of further investment.

The size range and spectrum of image presentations of lesions should be carefully specified in
the study design and in the use case for a QIB algorithm. The subset of the image spectrum, along
with the type of measurement, need to be clearly specified before cases for the study can be
selected.

In some cases image presentation may be a major factor in QIB measurement and evaluation of
image quality may permit a study-specific determination of measurement uncertainty; this possibility
has not been addressed in this paper. Many methods exist for assessing image quality such as using
test objects (phantoms) to assess device characteristics. The value of performing repeat ‘‘scan–
rescan’’ imaging studies in order to measure the non-biological variability has been recognized by
national groups such as QIBA, and the Quantitative Imaging Network (QIN). For example, work
has been performed on evaluating the level of single-patient repeatability in a multi-center clinical
trial to show the feasibility of reliably detecting a particular level of change in a QIB in a single
patient.74

We have chosen to emphasize unscaled, or absolute, performance indices which are expressed in
the units of measurement and include CP, TDI, root mean square error, LOAs, and RC. In contrast,
scaled or relative indices such as ICC, CCC, and coefficient of variation are unitless. Relative indices
are useful for comparing any two measuring devices, including those measuring different quantities,
but are less informative in a given clinical context because their estimates do not provide a direct
clinical interpretation in the unit of measurement.

When the true value is available, one must choose between disaggregated and aggregated
approaches. When using a disaggregated approach, investigators should always report both bias
and precision. It is important to keep in mind that one algorithm may perform best in terms of
bias, but a different algorithm producing the same measurand may perform best in terms of
precision. If investigators use an aggregated approach, the algorithm that has the best
agreement with truth is considered to have the best performance. Due to the tradeoff of
agreement between bias and precision, the best performing algorithm by an aggregated
approach may differ from those identified by a disaggregated approach. In other words, we can
have an algorithm that agrees best with truth, but is not necessarily the best in terms of bias or
precision; the algorithm with least bias as well as highest precision implies the best agreement with
truth, but not vice versa.

We have distinguished between statistical methods based on knowing the true value and methods
for comparison of algorithms against a reference standard where the reference standard provides
values measured with error. The latter should not be treated as the true value. Moreover,
investigators comparing algorithms to such a reference standard should perform or refer to the
appropriate bias and precision studies to fully characterize the reference standard.

In Section 5, we illustrated through simulation studies that using a reference standard in place
of the true values can lead to substantial bias in estimating metrics for evaluating and comparing
QIB algorithms, even when the agreement between the reference standard and the true values is
relatively strong. In order for unbiased estimation of these metrics under this setup, the agreement
between the reference standard and the true values needs to be strong. Although there are many
factors to consider, it seems that the ICC between the true value and the reference standard would
have to be on the order of 0.999 or more in order for unbiased estimation of the ICCs of QIB
algorithms. The agreement between the reference standard and the true values necessary for
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unbiased estimation will vary from metric to metric, but will most likely also need to be similarly
strong, as mentioned in Section 5. The assumption would have to be based on beliefs from
scientific theory or prior experience because the true value on real clinical cases is not available
for testing. Similarly, the assumptions about a linear relationship between QIB algorithms’
measurements and the true value would have to be based on scientific theory and/or prior
experience because of the lack of the true value.

For assessing interchangeability of QIB algorithms, one needs to be careful in interpreting the
scaled indices such as ICC and CCC. These indices depend on the between-subject differences in the
study sample. Large between-subject variability implies large values of ICC and CCC even if
the individual differences remain the same.75 Thus, these relative indices are not generalizable to
other populations. We recommend unscaled indices, such as CP, TDI, or LOA, for assessing
agreement between QIB algorithms. However, as mentioned in subsection 4.2, one must be aware
of heterogeneity in the differences in algorithms’ measurements relative to the true values when
calculating LOAs. If the algorithms have different functional relationships with the truth, then the
interpretation of LOA can be flawed.

The emphasis of this paper has been on uni-dimensional quantitative imaging measures and their
associated algorithms. The future of QIB will continue to move toward higher dimensional
quantities, including architectures of tissue morphology, microstructure, or architecture
manifested in image textures, vector or tensor measures of fluid flows, localization and distance
measures, perfusion, diffusion, and so on. Development of such QIBs is an active area of
investigation and will require extensions to the methods considered in this paper.

While our emphasis has been on the assessment of the technical performance of QIB algorithms,
we have also included in Table 3 the subsequent steps needed for establishing the effectiveness of a
QIB algorithm for clinical implementation or regulatory approval with defined performance claims.
Table 3 thus provides an overview of the many phases of the process.

In the fourth paper of this series31 the statistical methods described in this paper are illustrated
with three studies of tumor volume or change in tumor volume as measured on multiple CT
quantitative computer algorithms. That paper is meant to make the concepts presented here more
concrete and understandable and provide links to useful software; however, the paper does not
represent many aspects of QIB performance evaluation and comparisons that might be encountered
in other applications. The comparison of QIB computer algorithms would be facilitated by the
development of large annotated image archives and the batch processing techniques to use for
evaluating algorithms.

To obtain useful technical performance with QIBs, quality assurance and the handling of
outliers beyond that of traditional radiology practice is critically important. Currently, the
overall evaluation of image quality is often heavily dependent on human observers. Automation
of this process, using phantoms for example, may be used to quantitatively verify image quality
parameters such as modulation transfer function, noise power spectrum, and signal-to-noise ratio.
Often, given the complexity of biomarker derivation, use of a single imaging device, protocol, and
analysis procedure is important for minimizing variability. However, this approach is not always
possible; thus, it is important when multiple devices are used to perform studies showing that the
devices and imaging protocols are equivalent for QIB calculation, particularly when the
calculation requires repeat imaging. Even if a single image acquisition device is used, software
or hardware upgrades may introduce more bias and/or less precision in the derived QIB.

We look forward to a future with increased availability and utilization of statistically validated
quantitative image-based biomarkers for use in both clinical trials and patient-specific clinical
practice. We hope this paper is a useful contribution toward that goal.
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